Microbial community shift via black carbon: Insight into biological nitrogen removal from microbial assemblage and functional patterns.

Environ Res

Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, PR China.

Published: January 2021

Understanding the ecological relationship of microbial community under external stimulation is crucial for environmental restoration. Black carbon (e.g., biochar) have been widely deemed as a strategy to enhance pollutants removal because of its structure and redox-active property. However, the underlying ecological mechanism of microbial community under black carbon addition is poorly understood. The major purposes of this study were to determine the microbial assemblage and functional patterns via null model test, network analysis, and function prediction. The results showed that the nitrate removal efficiency of modified black carbon system achieved 46.44%. Both deterministic and stochastic processes were significant for mediating the microbial assemblage and the deterministic process dominated (>95%) the assemblage of community. Keystone taxa in the black carbon systems, involving Sulfuricella, Allorhizobium, and Nitrospira, stimulated the shift of community composition regarding the nitrogen removal. The existence of black carbon and the biotic interactions increased biological nitrate utilization and promoted nitrogen removal. Overall, this study presents the mechanism of bacterial community assembly and provides insight into biological nitrogen removal from microbial ecological perspective.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.envres.2020.110266DOI Listing

Publication Analysis

Top Keywords

black carbon
24
nitrogen removal
16
microbial community
12
microbial assemblage
12
insight biological
8
biological nitrogen
8
removal microbial
8
assemblage functional
8
functional patterns
8
microbial
7

Similar Publications

High-Efficiency (21.4%) Carbon Perovskite Solar Cells via Cathode Interface Engineering by using CuPc Hole-Transporting Layers.

Angew Chem Int Ed Engl

January 2025

EPFL: Ecole Polytechnique Federale de Lausanne, Department of Chemistry, Rue de Industries 17, 1050, Sion, SWITZERLAND.

Carbon perovskite solar cells (C-PSCs) represent a promising photovoltaic technology that addresses the long-term operating stability needed to compete with commercial Si solar cells. However, the poor interface contacts between the carbon electrode and the perovskite result in a gap between C-PSC's performances and state-of-the-art PSCs based on metallic back electrodes. In this work, Cu (II) phthalocyanine (CuPc) was rediscovered as an effective hole-transporting material (HTM) to be coupled with carbon electrodes.

View Article and Find Full Text PDF

Enhancing Catalytic Removal of Autoexhaust Soot Particles via the Modulation of Interfacial Oxygen Vacancies in Cu/CeO Catalysts.

Environ Sci Technol

January 2025

State Key Laboratory of Heavy Oil Processing, Key Laboratory of Optical Detection Technology for Oil and Gas, College of Science, China University of Petroleum, Beijing 102249, PR China.

The purification efficiency of autoexhaust carbon strongly depends on the heterogeneous interface structure between active metal and oxide, which can modulate the local electronic structure of defect sites to promote the activation of reactant molecules. Herein, the high-dispersion CuO clusters supported on the well-defined CeO nanorods were prepared using the complex deposition slow method. The formation of heteroatomic Cu-O-Ce interfacial structural units as active sites can capture electrons to achieve activation of the NO and O molecules.

View Article and Find Full Text PDF

Quantifying how co-acting global change factors (GCFs) influence plant invasion is crucial for predicting future invasion dynamics. We did a meta-analysis to assess pairwise effects of five GCFs (elevated CO, drought, eutrophication, increased rainfall and warming) on native and alien plants. We found that alien plants, compared to native plants, suffered less or benefited more for four of the eight pairwise GCF combinations, and that all GCFs acted additively.

View Article and Find Full Text PDF

The maritime transport sector poses significant air quality concerns, particularly in nearby cities. Ultrafine particles (UFP, diameter < 100 nm) are of particular concern due to their potential health impacts. This study measured particle number concentrations (PNC), size distributions (PNSD), and other pollutants including particulate matter (PM), nitrogen oxides (NO), black carbon (BC), sulfur dioxide (SO) and ozone (O), organic markers and trace elements at a major European harbor and an urban background (UB) location.

View Article and Find Full Text PDF

A Review of Laboratory Studies on the Heterogeneous Chemistry of NO: Mechanisms and Uptake Kinetics.

J Phys Chem A

January 2025

State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.

NO is a significant primary atmospheric pollutant that plays a key role in atmospheric chemistry. It serves as a crucial precursor to photochemical smog, acid rain, and secondary particulate matter and is instrumental in determining the atmospheric oxidation capacity. In this review, we focus on the heterogeneous chemistry of NO, which has been demonstrated to significantly influence the sources and sinks of various nitrogen-containing species through field measurements and model simulations.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!