Inorg Chem
Department of Chemistry, The University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada.
Published: October 2020
High-performance electronic materials and redox catalysts often rely on fast rates of intermolecular electron transfer (IET). Maximizing IET rates requires strong electronic coupling () between the electron donor and acceptor, yet universal structure-property relationships governing in outer-sphere IET reactions have yet to be developed. For ground-state IET reactions, is reasonably approximated by the extent of overlap between the frontier donor and acceptor orbitals involved in the electron-transfer reaction. Intermolecular interactions that encourage overlap between these orbitals, thereby creating a direct orbital pathway for IET, have a strong impact on and, by extension, the IET rates. In this Forum Article, we present a set of intuitive molecular design strategies employing this direct orbital pathway principle to maximize for IET reactions. We highlight how the careful design of redox-active molecules anchored to solid semiconducting substrates provides a powerful experimental platform for elucidating how electronic structure and specific intermolecular interactions affect IET reactions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.inorgchem.0c02251 | DOI Listing |
Microsc Microanal
January 2025
Fritz-Haber-Institut der Max-Planck-Gesellschaft, Berlin 14195, Germany.
In catalysis research, the amount of microscopy data acquired when imaging dynamic processes is often too much for nonautomated quantitative analysis. Developing machine learned segmentation models is challenged by the requirement of high-quality annotated training data. We thus substitute expert-annotated data with a physics-based sequential synthetic data model.
View Article and Find Full Text PDFACS Catal
January 2025
Department of Surface and Plasma Science, Faculty of Mathematics and Physics, Charles University, V Holešovičkách 2, 180 00 Prague 8, Czech Republic.
Achieving the optimal balance between cost-efficiency and stability of oxygen reduction reaction (ORR) catalysts is currently among the key research focuses aiming at reaching a broader implementation of proton-exchange membrane fuel cells (PEMFCs). To address this challenge, we combine two well-established strategies to enhance both activity and stability of platinum-based ORR catalysts. Specifically, we prepare ternary PtNi-Au alloys, where each alloying element plays a distinct role: Ni reduces costs and boosts ORR activity, while Au enhances stability.
View Article and Find Full Text PDFIET Syst Biol
December 2024
Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital, Harbin Medical University, Harbin, China.
Oral squamous cell carcinoma (OSCC) is a common head and neck malignant tumour with high incidence and poor prognosis. Arsenic trioxide (ATO) has therapeutic effects on solid tumours. Microwave ablation (MWA) has unique advantages in the treatment of solid tumours.
View Article and Find Full Text PDFACS Polym Au
December 2024
Forschungszentrum Jülich GmbH, Helmholtz Institute Erlangen-Nürnberg for Renewable Energy (IET-2), Cauerstraße 1, 91058 Erlangen, Germany.
Polyethersulfone (PSU) as a commercially available polymer offers many different opportunities for functionalization for diverse fields of application, for example, electrophilic substitutions like sulfonation and bromination or nucleophilic reactions such as lithiation. This study presents three different polysulfone derivatives, first functionalized by a lithiation reaction, followed by a reaction with carbonyl compounds containing pentafluorophenyl groups. In the last step, the pentafluorophenyl moieties of the modified PSU were sulfonated by thiolation and subsequent oxidation to sulfonic acid groups.
View Article and Find Full Text PDFAnalyst
January 2025
Wroclaw Medical University, Department of Forensic Medicine, 4 J. Mikulicza-Radeckiego Street, Wroclaw 50345, Poland.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!
© LitMetric 2025. All rights reserved.