A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Haploinsufficiency of cohesin protease, Separase, promotes regeneration of hematopoietic stem cells in mice. | LitMetric

Cohesin recently emerged as a new regulator of hematopoiesis and leukemia. In addition to cohesin, whether proteins that regulate cohesin's function have any direct role in hematopoiesis and hematologic diseases have not been fully examined. Separase, encoded by the ESPL1 gene, is an important regulator of cohesin's function. Canonically, protease activity of Separase resolves sister chromatid cohesion by cleaving cohesin subunit-Rad21 at the onset of anaphase. Using a Separase haploinsufficient mouse model, we have uncovered a novel role of Separase in hematopoiesis. We report that partial disruption of Separase distinctly alters the functional characteristics of hematopoietic stem/progenitor cells (HSPCs). Although analyses of peripheral blood and bone marrow of Espl1 mice broadly displayed unperturbed hematopoietic parameters during normal hematopoiesis, further probing of the composition of early hematopoietic cells in Espl1 bone marrow revealed a mild reduction in the frequencies of the Lin Sca1 Kit (LSK) or LSK CD48 CD150 multipotent hematopoietic progenitors population without a significant change in either long-term or short-term hematopoietic stem cells (HSCs) subsets at steady state. Surprisingly, however, we found that Separase haploinsufficiency promotes regeneration activity of HSCs in serial in vivo repopulation assays. In vitro colony formation assays also revealed an enhanced serial replating capacity of hematopoietic progenitors isolated from Espl1 mice. Microarray analysis of differentially expressed genes showed that Separase haploinsufficiency in HSCs (SP-KSL) leads to enrichment of gene signatures that are upregulated in HSCs compared to committed progenitors and mature cells. Taken together, our findings demonstrate a key role of Separase in promoting hematopoietic regeneration of HSCs.

Download full-text PDF

Source
http://dx.doi.org/10.1002/stem.3280DOI Listing

Publication Analysis

Top Keywords

separase
9
promotes regeneration
8
hematopoietic
8
hematopoietic stem
8
stem cells
8
cohesin's function
8
role separase
8
bone marrow
8
espl1 mice
8
hematopoietic progenitors
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!