Auditory experience and behavioral training can modify perceptual performance. However, the consequences of temporal perceptual learning for temporal and spectral neural processing remain unclear. Specifically, the attributes of neural plasticity that underlie task generalization in behavioral performance remain uncertain. To assess the relationship between behavioral and neural plasticity, we evaluated neuronal temporal processing and spectral tuning in primary auditory cortex (AI) of anesthetized owl monkeys trained to discriminate increases in the envelope frequency (e.g., 4-Hz standard vs. >5-Hz targets) of sinusoidally amplitude-modulated (SAM) 1-kHz or 2-kHz carriers. Behavioral and neuronal performance generalization was evaluated for carriers ranging from 0.5 kHz to 8 kHz. Psychophysical thresholds revealed high SAM discrimination acuity for carriers from one octave below to ∼0.6 octave above the trained carrier frequency. However, generalization of SAM discrimination learning progressively declined for carrier frequencies >0.6 octave above the trained carrier frequency. Neural responses in AI showed that SAM discrimination training resulted in ) increases in temporal modulation preference, especially at carriers close to the trained frequency, ) narrowing of spectral tuning for neurons with characteristic frequencies near the trained carrier frequency, potentially limiting spectral generalization of temporal training effects, and ) enhancement of firing-rate contrast for rewarded versus nonrewarded SAM frequencies, providing a potential cue for behavioral temporal discrimination near the trained carrier frequency. Our findings suggest that temporal training at a specific spectral location sharpens local frequency tuning, thus, confining the training effects to a narrow frequency range and limiting generalization of temporal discrimination learning across a wider frequency range. Monkeys' ability to generalize amplitude modulation discrimination to nontrained carriers was limited to one octave below and 0.6 octave above the trained carrier frequency. Asymmetric generalization was paralleled by sharpening in cortical spectral tuning and enhanced firing-rate contrast between rewarded and nonrewarded SAM stimuli at carriers near the trained frequency. The spectral content of the training stimulus specified spectral and temporal plasticity that may provide a neural substrate for limitations in generalization of temporal discrimination learning.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7864250 | PMC |
http://dx.doi.org/10.1152/jn.00278.2020 | DOI Listing |
Proc Natl Acad Sci U S A
February 2025
Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, People's Republic of China.
Carrier-free nanomedicines exhibited significant potential in elevating drug efficacy and safety for tumor management, yet their self assembly typically relied on chemical modifications of drugs or the incorporation of surfactants, thereby compromising the drug's inherent pharmacological activity. To address this challenge, we proposed a triethylamine (TEA)-mediated protonation-deprotonation strategy that enabled the adjustable-proportion self assembly of dual drugs without chemical modification, achieving nearly 100% drug loading capacity. Molecular dynamic simulations, supported by experiment evidence, elucidated the underlying self-assembly mechanism.
View Article and Find Full Text PDFCancer Pathog Ther
January 2025
Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510120, China.
Background: Long non-coding ribonucleic acids (lncRNAs) regulate messenger RNA (mRNA) expression and influence cancer development and progression. Cuproptosis, a newly discovered form of cell death, plays an important role in cancer. Nonetheless, additional research investigating the association between cuproptosis-related lncRNAs and prostate cancer (PCa) prognosis is required.
View Article and Find Full Text PDFRSC Adv
January 2025
College of Material Science and Engineering, Key Laboratory of Advanced Materials of Tropical Island Resources, Ministry of Education, Hainan University Haikou 570228 China
With the progress of modern technology and the diversification of societal demands, traditional materials with single properties can no longer meet the requirements of complex and constantly evolving application scenarios. To tackle intricate biomedical applications like disease diagnosis and treatment, scientists are focusing on exploring the design of novel multifunctional biomaterials that possess diverse activities. Bismuth titanate (BiTiO, BTO), which has multifunctionality and great application potential, unfortunately suffers from inadequate photocatalytic performance.
View Article and Find Full Text PDFNanoscale
January 2025
School of Chemical Sciences, National Institute of Science Education and Research (NISER), Bhubaneswar, Odisha 752050, India.
The performance of an optoelectronic device is largely dependent on the light harvesting properties of the active material as well as the dynamic behaviour of the photoexcited charge carriers upon absorption of light. Recently, atomically thin two-dimensional transition metal dichalcogenides (2D TMDCs) have garnered attention as highly prospective materials for advanced ultrathin solar cells and other optoelectronic applications, owing to their strong interaction with electromagnetic radiation, substantial optical conductivity, and impressive charge carrier mobility. WSe is one such extremely promising solar energy material.
View Article and Find Full Text PDFSmall
January 2025
Key Laboratory of Photonic Materials and Devices Physics for Oceanic Applications, Ministry of Industry and Information Technology of China, College of Physics and Optoelectronic Engineering, Harbin Engineering University, Harbin, 150001, China.
The design and synthesis of multifunctional nanomaterials have attracted considerable attention for expanding the range of practical applications. Herein, a metal-organic framework (MOFs)-derived NiCoS attached to MXene is rationally designed and constructed for an optical limiter and supercapacitor. The MOF-derived NiCoS enhances the tendency of hydroxyl groups on the MXene surface to attract metal ions, resulting in the formation of sulfur vacancies.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!