IDPology of the living cell: intrinsic disorder in the subcellular compartments of the human cell.

Cell Mol Life Sci

Department of Computer Science, Virginia Commonwealth University, 401 West Main Street, Room E4225, Richmond, VA, 23284, USA.

Published: March 2021

AI Article Synopsis

Article Abstract

Intrinsic disorder can be found in all proteomes of all kingdoms of life and in viruses, being particularly prevalent in the eukaryotes. We conduct a comprehensive analysis of the intrinsic disorder in the human proteins while mapping them into 24 compartments of the human cell. In agreement with previous studies, we show that human proteins are significantly enriched in disorder relative to a generic protein set that represents the protein universe. In fact, the fraction of proteins with long disordered regions and the average protein-level disorder content in the human proteome are about 3 times higher than in the protein universe. Furthermore, levels of intrinsic disorder in the majority of human subcellular compartments significantly exceed the average disorder content in the protein universe. Relative to the overall amount of disorder in the human proteome, proteins localized in the nucleus and cytoskeleton have significantly increased amounts of disorder, measured by both high disorder content and presence of multiple long intrinsically disordered regions. We empirically demonstrate that, on average, human proteins are assigned to 2.3 subcellular compartments, with proteins localized to few subcellular compartments being more disordered than the proteins that are localized to many compartments. Functionally, the disordered proteins localized in the most disorder-enriched subcellular compartments are primarily responsible for interactions with nucleic acids and protein partners. This is the first-time disorder is comprehensively mapped into the human cell. Our observations add a missing piece to the puzzle of functional disorder and its organization inside the cell.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11071772PMC
http://dx.doi.org/10.1007/s00018-020-03654-0DOI Listing

Publication Analysis

Top Keywords

subcellular compartments
20
intrinsic disorder
16
proteins localized
16
disorder
12
human cell
12
human proteins
12
protein universe
12
disorder content
12
human
9
cell intrinsic
8

Similar Publications

A Rewired NADPH-Dependent Redox Shuttle for Testing Peroxisomal Compartmentalization of Synthetic Metabolic Pathways in .

Microorganisms

December 2024

Department of Chemical, Biological and Environmental Engineering, Universitat Autònoma de Barcelona, Carrer de les Sitges, s/n, 08193 Bellaterra, Catalonia, Spain.

The introduction of heterologous pathways into microbial cell compartments offers several potential advantages, including increasing enzyme concentrations and reducing competition with native pathways, making this approach attractive for producing complex metabolites like fatty acids and fatty alcohols. However, measuring subcellular concentrations of these metabolites remains technically challenging. Here, we explored 3-hydroxypropionic acid (3-HP), readily quantifiable and sharing the same precursors-acetyl-CoA, NADPH, and ATP-with the above-mentioned products, as a reporter metabolite for peroxisomal engineering in the yeast .

View Article and Find Full Text PDF

Endoplasmic Reticulum-Targeted Polymer-Manganese Nanocomplexes for Tumor Immunotherapy.

ACS Nano

January 2025

Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou 310006, China.

Manganese ions (Mn) are an immune activator that enhances the activation of both cGAS and STING proteins. The STING signaling activation and subsequential immune responses are predominantly associated with endoplasmic reticulum (ER). Therefore, ER targeting of Mn in the subcellular compartments would promote the activation of STING signaling pathways.

View Article and Find Full Text PDF

Calcium (Ca)-dependent signalling plays a well-characterised role in the perception and response mechanisms to environmental stimuli in plant cells. In the context of a constantly changing environment, it is fundamental to understand how crop yield and microalgal biomass productivity are affected by external factors. Ca signalling is known to be important in different physiological processes in microalgae but many of these signal transduction pathways still need to be characterised.

View Article and Find Full Text PDF

Non-Canonical, Extralysosomal Activities of Lysosomal Peptidases in Physiological and Pathological Conditions: New Clinical Opportunities for Cancer Therapy.

Cells

January 2025

Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Universidad de Sevilla, Consejo Superior de Investigaciones Científicas (CSIC), Universidad Pablo de Olavide, Américo Vespucio 24, 41092 Sevilla, Spain.

Lysosomes are subcellular compartments characterised by an acidic pH, containing an ample variety of acid hydrolases involved in the recycling of biopolymers. Among these hydrolases, lysosomal proteases have merely been considered as end-destination proteases responsible for the digestion of waste proteins, trafficked to the lysosomal compartment through autophagy and endocytosis. However, recent reports have started to unravel specific roles for these proteases in the regulation of initially unexpected biological processes, both under physiological and pathological conditions.

View Article and Find Full Text PDF

Interaction of normelinonine F and related N-methyl-β-carbolines derivatives with bovine serum albumin. Spectroscopic profiles, multivariate analysis and theoretical calculations.

Int J Biol Macromol

January 2025

Instituto Tecnológico de Chascomús (CONICET-UNSAM), Av. Intendente Marino Km 8.2, CC 164, B7130IWA Chascomús, Argentina; Escuela de Bio y Nanotecnologías (UNSAM), Argentina. Electronic address:

β-carbolines (βCs) represent a large family of bioactive alkaloids, including norharmane and normelinonine F, known for their diverse pharmacological activities. The effects of these alkaloids may depend, among other factors, on their delivery, accumulation in different subcellular compartments, and interactions with biomacromolecules such as serum albumins. In this study, we investigated the pH dependence of the interactions between bovine serum albumin (BSA) and four βCs (norharmane, normelinonine F, and their corresponding N(9)-methyl derivatives) using UV-vis and fluorescence spectroscopy, combined with multivariate analysis and molecular docking.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!