Fibroblast-derived extracellular matrix (fECM)-supported scaffolds made up of poly(lactic-co-glycolic acid) were prepared with the enhanced preservation of ECM components by composites with magnesium hydroxide nanoparticles (MH NPs), and were applied for the renal tissue regeneration. MH NP utilization resulted in an increased ECM protein amount, decreased scaffold degradation, and surface hydrophilic modification. These effects were correlated with the improved adhesion and viability of renal proximal tubule epithelial cells on the scaffold. In vivo experiments demonstrated effects of fECM and MH NPs on renal regeneration. The number of glomeruli was the largest in the ECM scaffold with MH NPs as compared to the pristine scaffold and ECM scaffold without MH NPs. Quantitative PCR analysis exhibited less inflammation (IL-1β, TNF-α, and IL-6) and fibrosis-related (vimentin, collagen I, and α-SMA) markers, whereas opposite results were found in regeneration-related markers (Pax2, vWf, Wt1, and Emx2). The concentration of renal function-related molecules, creatinine and blood urea nitrogen diminished in the ECM scaffold with MH NPs. All results indicate that MH NPs utilization for the renal regenerative scaffold is effective for in vitro and in vivo environments and is, therefore, a good model for regeneration of kidneys and other tissues, and organs.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d0bm00871kDOI Listing

Publication Analysis

Top Keywords

ecm scaffold
12
scaffold nps
12
magnesium hydroxide
8
hydroxide nanoparticles
8
renal tissue
8
tissue regeneration
8
scaffold
7
renal
6
nps
6
ecm
5

Similar Publications

Objective: Research and tools are necessary for understanding prostate cancer biology. 3D cell culture models have been created to overcome the limitations of animal models and 2D cell culture. The amniotic membrane (AM), a natural biomaterial, emerges as an ideal scaffold for 3D cultures due to its accessibility and incorporation of the extracellular matrix (ECM) in both solid and liquid forms.

View Article and Find Full Text PDF

Autologous adipose tissue grafting (AAG) can provide soft tissue reconstruction in congenital defects, traumatic injuries, cancer care, or cosmetic procedures; over 94,000 AAG procedures are performed in the United States every year. Despite its effectiveness, the efficiency of AAG is limited by unpredictable adipocyte survival, impacting graft volume retention (26-83%). Acellular adipose matrices (AAMs) have emerged as a potential alternative to AAG.

View Article and Find Full Text PDF

Electrospinning based biomaterials for biomimetic fabrication, bioactive protein delivery and wound regenerative repair.

Regen Biomater

December 2024

Department of Trauma Surgery, Orthopaedic Surgery and Plastic Surgery, University Medical Center Göttingen, University of Göttingen, Göttingen 37075, Germany.

Electrospinning is a remarkably straightforward and adaptable technique that can be employed to process an array of synthetic and natural materials, resulting in the production of nanoscale fibers. It has emerged as a novel technique for biomedical applications and has gained increasing popularity in the research community in recent times. In the context of tissue repair and tissue engineering, there is a growing tendency toward the integration of biomimetic scaffolds and bioactive macromolecules, particularly proteins and growth factors.

View Article and Find Full Text PDF

Recent interest has been focused on extracellular matrix (ECM)-based scaffolds totreat critical-sized bone injuries. In this study, urea was used to decellularize and solubilize human placenta tissue. Then, different concentrations of ECM were composited with 8% alginate (Alg) and 12% silk fibroin (SF) for printing in order to produce a natural 3D construct that resembled bone tissue.

View Article and Find Full Text PDF

A meniscus injury is a common cartilage disease of the knee joint. Despite the availability of various methods for the treatment of meniscal injuries, the poor regenerative capacity of the meniscus often necessitates resection, leading to the accelerated progression of osteoarthritis. Advances in tissue engineering have introduced meniscal tissue engineering as a potential treatment option.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!