Background: In this study, we investigate the capacity of two different non-invasive brain stimulation (NIBS) techniques (anodal transcranial direct current stimulation (anodal tDCS) and high-frequency transcranial random noise stimulation (hf-tRNS)) regarding the relationship between stimulation duration and their efficacy in inducing long-lasting changes in motor cortical excitability.

Methods: Fifteen healthy subjects attended six experimental sessions (90 experiments in total) and underwent both anodal tDCS of 7, 13, and 20 min duration, as well as high-frequency 1mA-tRNS of 7, 13, and 20 min stimulation duration. Sessions were performed in a randomized order and subjects were blinded to the applied methods.

Results: For anodal tDCS, no significant stable increases of motor cortical excitability were observed for either stimulation duration. In contrast, for hf -tRNS a stimulation duration of 7 min resulted in a significant increase of motor cortical excitability lasting from 20 to 60 min poststimulation. While an intermediate duration of 13 min hf-tRNS failed to induce lasting changes in motor cortical excitability, a longer stimulation duration of 20 min hf-tRNS led only to significant increases at 50 min poststimulation which did not outlast until 60 min poststimulation.

Conclusion: Hf-tRNS for a duration of 7 min induced robust increases of motor cortical excitability, suggesting an indirect proportional relationship between stimulation duration and efficacy. While hf-tRNS appeared superior to anodal tDCS in this study, further systematic and randomized experiments are necessary to evaluate the generalizability of our observations and to address current intensity as a further modifiable contributor to the variability of transcranial brain stimulation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7525483PMC
http://dx.doi.org/10.14814/phy2.14595DOI Listing

Publication Analysis

Top Keywords

stimulation duration
28
motor cortical
24
cortical excitability
20
anodal tdcs
20
stimulation
11
duration
10
tdcs high-frequency
8
brain stimulation
8
relationship stimulation
8
duration efficacy
8

Similar Publications

Introduction: Transcranial magnetic stimulation (TMS) is widely used for the noninvasive activation of neurons in the human brain. It utilizes a pulsed magnetic field to induce electric pulses that act on the central nervous system, altering the membrane potential of nerve cells in the cerebral cortex to treat certain mental diseases. However, the effectiveness of TMS can be compromised by significant heat generation and the clicking noise produced by the pulse in the TMS coil.

View Article and Find Full Text PDF

Background: Resistin may connect obesity and intervertebral disc (IVD) degeneration (IDD) and is linked with chronic inflammation. Furthermore, human IDD is characterized by high expression of interleukin-20 (IL-20). The response of human nucleus pulposus (NP) cells to tensile forces depends on both the duration and magnitude of the force applied.

View Article and Find Full Text PDF

Study Question: Does the use of slush nitrogen (SN) for embryo vitrification improve embryo transfer outcomes compared to liquid nitrogen (LN)?

Summary Answer: SN is a safe method for embryo preservation and significantly improves post-warming survival rates during repeated vitrification-warming cycles; however, after a single freeze-thaw cycle, pregnancy outcomes are not improved when embryos are vitrified with SN compared to LN.

What Is Known Already: SN is a combination of solid and LN, with a temperature lower than regular LN, and it is an alternative to conventional LN in achieving a faster cooling speed. Studies have shown that SN improves survival in non-human embryos and human oocytes.

View Article and Find Full Text PDF

Blood flow restriction (BFR) combined with low work rate exercise can enhance muscular and cardiovascular fitness. However, whether neural mechanisms mediate these enhancements remains unknown. This study examined changes in corticospinal excitability and motor cortical inhibition following arm cycle ergometry with and without BFR.

View Article and Find Full Text PDF

Highly purified-hMG versus rFSH in ovarian hyperstimulation in women undergoing elective fertility preservation: a retrospective cohort study.

JBRA Assist Reprod

January 2025

Racine IVF Unit, Fertility Institute, Lis Maternity Hospital, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel affiliated to the Faculty of Medical & Health Sciences, Tel Aviv University, Tel Aviv, Israel.

Objective: To compare recombinant FSH (rFSH) with highly purified-human menopausal gonadotrophin (hp-hMG) on ovarian response in women undergoing elective fertility preservation (FP).

Methods: This retrospective study included 456 women who underwent elective FP with gonadotropin-releasing hormone (GnRH) antagonist or progestin-primed ovarian stimulation (PPOS) protocols between 01/2017-12/2021. Only the first treatment cycle of each woman was included.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!