SCFAs are primarily produced in the colon by bacterial fermentation of nondigestible carbohydrates. Besides providing energy, SCFAs can suppress development of colon cancer. The mechanism, however, remains elusive. Here, we demonstrate that the SCFA propionate upregulates surface expression of the immune stimulatory NKG2D ligands, MICA/B by imposing metabolic changes in dividing cells. Propionate-mediated MICA/B expression did not rely on GPR41/GPR43 receptors but depended on functional mitochondria. By siRNA-directed knockdown, we could further link phosphoenolpyruvate carboxykinase (PEPCK), the rate-limiting enzyme in gluconeogenesis to propionate regulation of MICA/B expression. Moreover, knockdown of Rictor and specific mTOR inhibitors implicated mTORC2 activity with metabolic changes that control MICA/B expression. SCFAs are precursors to short-chain acyl-CoAs that are used for histone acylation thereby linking the metabolic state to chromatin structure and gene expression. Propionate increased the overall acetylation and propionylation and inhibition of lysine acetyltransferases (KATs) that are responsible for adding acyl-CoAs to histones reduced propionate-mediated MICA/B expression, suggesting that propionate-induced acylation increases MICA/B expression. Notably, propionate upregulated MICA/B surface expression on colon cancer cells in an acylation-dependent manner; however, the impact of mitochondrial metabolism on MICA/B expression was different in colon cancer cells compared with Jurkat cells, suggesting that continuous exposure to propionate in the colon may provide an enhanced capacity to metabolize propionate. Together, our findings support that propionate causes metabolic changes resulting in NKG2D ligand surface expression, which holds potential as an immune activating anticancer therapy.

Download full-text PDF

Source
http://dx.doi.org/10.1096/fj.202000162RDOI Listing

Publication Analysis

Top Keywords

mica/b expression
24
surface expression
16
cancer cells
12
colon cancer
12
metabolic changes
12
expression
11
propionate
8
nkg2d ligands
8
mica/b
8
propionate-mediated mica/b
8

Similar Publications

Background: Concurrent (STK11, KL) mutant non-small cell lung cancers (NSCLC) do not respond well to current immune checkpoint blockade therapies, however targeting major histocompatibility complex class I-related chain A or B (MICA/B), could pose an alternative therapeutic strategy through activation of natural killer (NK) cells.

Methods: Expression of NK cell activating ligands in NSCLC cell line and patient data were analyzed. Cell surface expression of MICA/B in NSCLC cell lines was determined through flow cytometry while ligand shedding in both patient blood and cell lines was determined through ELISA.

View Article and Find Full Text PDF

[The effect of c-Myc on regulating the immune-related ligands in Y subtype small cell lung cancer through histone deacetylase 1].

Zhonghua Zhong Liu Za Zhi

November 2024

Translational Oncology Research Lab, Jilin Cancer Hospital, Changchun130012, China Department of Thoracic Oncology, Jilin Cancer Hospital, Changchun130012, China.

To explore the effect and mechanism of c-Myc on regulating the expression of immune-related ligands in Y subtype small-cell lung cancer (SCLC) characterized by high expression of immune-related molecules. The Y subtype SCLC cell line H196 was randomly divided into the control group, c-Myc inhibitor 10058-F4 group, histone deacetylase 1 (HDAC1) inhibitor pyroxamide group, and 10058-F4 plus pyroxamide group. The co-culture system with NK-92MI cells was used to determine the effect of H196 cells on the function of natural killer (NK) cells.

View Article and Find Full Text PDF

B7H6 is the predominant activating ligand driving natural killer cell-mediated killing in patients with liquid tumours: evidence from clinical, in silico, in vitro, and in vivo studies.

EBioMedicine

December 2024

Center for Cell and Gene Therapy, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea; Biomedical Mathematics Group, Pioneer Research Center for Mathematical and Computational Sciences, Institute for Basic Science, Daejeon, 34126, Republic of Korea; KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon, 34113, Republic of Korea; Department of Biopharmaceutical Convergence, School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea. Electronic address:

Background: Natural killer (NK) cells are a subset of innate lymphoid cells that are inherently capable of recognizing and killing infected or tumour cells. This has positioned NK cells as a promising live drug for tumour immunotherapy, but limited success suggests incomplete knowledge of their killing mechanism. NK cell-mediated killing involves a complex decision-making process based on integrating activating and inhibitory signals from various ligand-receptor repertoires.

View Article and Find Full Text PDF

Background: Solid tumors are characterized by a low blood supply, complex stromal architecture, and immunosuppressive milieu, which inhibit CAR-T cell entry and survival. CXCR5 has previously been employed to increase CAR-T cell infiltration into CXCL13+ cancers. On the other hand, IL-7 improves the survival and persistence of T cells inside a solid tumor milieu.

View Article and Find Full Text PDF
Article Synopsis
  • Non-thermal plasma (NTP) shows potential as an anti-cancer therapy through both its ability to kill cancer cells and modify immune responses.
  • The study uses simulations to analyze how NTP causes chemical changes in immune checkpoint proteins of natural killer (NK) cells, finding that these changes don't significantly impact their binding affinity to NK cell receptors.
  • Additionally, NTP treatment leads to a quick decrease in certain inhibitory ligands for NK cells and an increase in activation ligands 24 hours later, highlighting its role in enhancing NK cell activity against cancer.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!