A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Antimonene nanosheets with enhanced electrochemical performance for energy storage applications. | LitMetric

Antimonene is an exfoliated 2D nanomaterial obtained from bulk antimony. It is a novel class of 2D material for energy storage applications. In the present work, antimonene was synthesized using a high-energy ball milling-sonochemical method. The structural, morphological, thermal, and electrochemical properties of antimonene were comparatively analyzed against bulk antimony. X-ray diffractometry (XRD) analysis confirms the crystal structure and 2D structure of antimonene, as a peak shift was observed. The Raman spectra show the peak shift for the E and A modes of vibration of antimony, which confirms the formation of antimonene. Scanning electron microscopy (SEM) and high-resolution transmission electron microscopy (HRTEM) images depict the exfoliation of antimonene from bulk antimony. Thermal analysis unveiled the thermal stability of antimonene up to 400 °C with only 3% weight loss. X-ray photoelectron spectroscopy (XPS) analysis reveals the formation of antimonene, which is free from contamination. The electrochemical properties of antimony and antimonene were investigated using cyclic voltammetry (CV) and chronopotentiometric (CP) analysis, using 2 M KOH as an electrolyte. Antimonene exhibited a relatively high specific capacitance of 597 F g compared to ball-milled antimony (101 F g) at a scan rate of 10 mV s. Moreover, electrochemical impedance spectroscopy (EIS) analysis revealed that antimonene has a relatively low equivalence series resistance (RESR) and low charge transfer resistance (RCT) compared to bulk antimony, which favors high electrochemical performance. The cyclic stability of antimonene was studied for 3000 cycles, and the results show high cyclic stability. The electrochemical results demonstrated that antimonene is a promising material for energy storage applications.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d0dt01753aDOI Listing

Publication Analysis

Top Keywords

bulk antimony
16
antimonene
14
energy storage
12
storage applications
12
electrochemical performance
8
material energy
8
electrochemical properties
8
peak shift
8
formation antimonene
8
electron microscopy
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!