The general synergistic effect of TiO -based heterostructures has been discovered to improve the sodium storage of anodes, involving conversion, alloying, and insertion mechanism materials. Herein, metal sulfides (MS , M = Sn , Co , Mo ), metallic Sb and Sn, as well as, carbon nanotubes (CNTs) are chosen as the model examples from the three kinds. The electrochemical testing demonstrates a better performance of heterostructrues involving TiO than the pristine anode components. The introduction of TiO into the MS and Sb or Sn systems induces a built-in electric field as the charge transfer force at the heterojunctions, greatly reducing the ion transfer resistance and promoting interfacial electron transfer. In the CNT/TiO structure, the chemical growth of TiO nanoparticles on the outer surface of CNTs makes the interface more compact than the physical blending case, offering better improvement of electrochemistry. The synergy should work via the growth of heterostructures, relying on the interface effects, which always plays the promotion role through the formation of driving force or grain boundaries and/or condense phase interface to facilitate charge transfer at the interface during the storage process. Therefore, the construction of reasonable heterostructures can endow materials with intriguing electrochemical performance based on the synergistic effect.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/smll.202004054 | DOI Listing |
Nanomaterials (Basel)
March 2025
Department of Chemical and Biochemical Engineering, Dongguk University, 30 Pildong-ro 1-gil, Jung-gu, Seoul 04620, Republic of Korea.
Flexible polymer-based piezoelectric nanogenerators (PENGs) have gained significant interest due to their ability to deliver clean and sustainable energy for self-powered electronics and wearable devices. Recently, the incorporation of fillers into the ferroelectric polymer matrix has been used to improve the relatively low piezoelectric properties of polymer-based PENGs. In this study, we investigated the effect of various nanofillers such as titania (TiO), zinc oxide (ZnO), reduced graphene oxide (rGO), and lead zirconate titanate (PZT) on the PENG performance of the nanocomposite thin films containing the nanofillers in poly(vinylidene fluoride-co-trifluoro ethylene) (P(VDF-TrFE)) matrix.
View Article and Find Full Text PDFNanomaterials (Basel)
February 2025
College of Sciences, College of Forestry, Henan Agricultural University, Zhengzhou 450002, China.
Photodegradation of antibiotics based on photocatalytic semiconductors is a promising option to alleviate water pollution. Despite its limitations, TiO-based photocatalysts are still the most widely studied materials for pollutant degradation. In this work, a pomegranate-like g-CN/C/TiO nano-heterojunction was constructed using the hydrothermal-calcination method, consisting of interconnected small crystals with a dense structure and closely contacted interface.
View Article and Find Full Text PDFNanoscale
March 2025
School of Integrated Circuits, Anhui University, Hefei 230601, China.
Correction for 'Simulation of the resistance switching performance and synaptic behavior of TiO-based RRAM devices with CoFeO insertion layers' by Fei Yang , , 2024, , 6729-6738, https://doi.org/10.1039/D3NR05935A.
View Article and Find Full Text PDFInt J Biol Macromol
March 2025
School of Chemical Engineering, Changchun University of Technology, Changchun 130012, China.
In this paper, the dispersion stability of graphene was effectively promoted by the introduction of hydroxypropyl cellulose (HPC), a novel composite hydrogel PAM-LMA-PDA@TiO-GN was prepared. Polyacrylamide (PAM) provided the basic three-dimensional network structure, lauryl methacrylate (LMA), as the hydrophobic monomer, constructed the hydrophobic associative micro-regions inside the hydrogel, which enhanced the structural stability, and polydopamine-coated TiO (PDA@TiO), as a nano-toughness enhancement point, which endowed the hydrogel with a stress and strain of 1026 kPa and 2519 %, respectively. Hydrogels loaded with Ag nanowires (Ag NWs) and graphene (GN) were prepared using Ag nanowires as the intercalating agent, graphene as the substrate and hydrogel as the carrier, graphene and Ag nanowires endow the hydrogels with excellent electron transport capabilities.
View Article and Find Full Text PDFCommun Chem
March 2025
School of Natural and Environmental Science, Newcastle University, Newcastle Upon Tyne, UK.
Diketopyrrolopyrrole-based blue dyes in dye-sensitized solar cells (DSCs) exhibit promise for building-integrated photovoltaics, but their efficiency is compromised by dye aggregation-induced charge recombination. Novel bile acid derivative co-adsorbents featuring bulky hydrophobic substituents at the 3-β position were synthesized to address this challenge. These molecules, designed to modulate intermolecular electronic interactions, effectively altered the TiO surface coverage dynamics, as evidenced by UV-Vis spectroscopy and dye-loading kinetics.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!