AI Article Synopsis

  • An 18-year-old male patient presented with refractory temporal lobe epilepsy and was diagnosed with an unusual diffuse glioma featuring a rare BRAF mutation and atypical characteristics similar to diffuse astrocytoma.
  • MRI scans identified a hyperintense lesion in the right temporal lobe, leading to surgical intervention where substantial tumor was removed.
  • Histopathological and molecular analyses confirmed the tumor's unique features and mutation, underscoring the importance of detailed studies for accurate diagnosis in epilepsy-associated gliomas, while highlighting similarities with diffuse astrocytoma.

Article Abstract

Here, we report a juvenile (18-year-old male) case of epilepsy-associated, isocitrate dehydrogenase wild-type/histone 3 wild-type diffuse glioma with a rare BRAF mutation and a focal atypical feature resembling diffuse astrocytoma. The patient presented with refractory temporal lobe epilepsy. Subsequently, magnetic resonance imaging revealed a hyperintense lesion in the right temporal lobe on fluid attenuated inversion recovery images. The patient underwent right lateral temporal lobectomy and amygdalohippocampectomy. Histopathologically, the tumor showed isomorphic, diffuse, infiltrative proliferation of glial tumor cells and intense CD34 immunoreactivity. The tumor cells were immunonegative for isocitrate dehydrogenase 1 (IDH1) R132H and BRAF V600E. Notably, the tumor cells showed the lack of nuclear staining for α-thalassemia/mental retardation syndrome, X-linked (ATRX). In addition, the Ki-67 labeling index, using a monoclonal antibody MIB-1, was elevated focally at tumor cells with p53 immunoreactivity. Molecular analyses identified a BRAF mutation, the first case reported in a glioma. BRAF is predicted to result in loss of kinase action; however, inactive mutants can stimulate mitogen-activated protein kinase kinase (MEK)-extracellular signal-regulated kinase (ERK) signaling through CRAF activation. Thus, according to the recent update of the consortium to inform molecular and practical approaches to central nervous system tumor taxonomy (cIMPACT-NOW update 4), our case is also compatible with diffuse glioma with the mitogen-activated protein kinase (MAPK) pathway alteration. Thorough immunohistochemical and molecular studies are necessary for diagnosis of epilepsy-associated, diffuse gliomas. Partial resemblance in histopathological and molecular genetic features to diffuse astrocytoma also calls for attention.

Download full-text PDF

Source
http://dx.doi.org/10.1111/neup.12693DOI Listing

Publication Analysis

Top Keywords

tumor cells
16
isocitrate dehydrogenase
12
diffuse glioma
12
braf mutation
12
case epilepsy-associated
8
epilepsy-associated isocitrate
8
dehydrogenase wild-type/histone
8
wild-type/histone wild-type
8
wild-type diffuse
8
glioma rare
8

Similar Publications

Objectives: Immune checkpoint inhibitors have revolutionized treatment of platinum-refractory advanced bladder cancer, offering hope where options are limited. Response varies, however, influenced by factors such as the tumor's immune microenvironment and prior therapy. Muscle-invasive bladder cancer (MIBC) is stratified into molecular subtypes, with distinct clinicopathologic features affecting prognosis and treatment.

View Article and Find Full Text PDF

Objective Applying carbon ion beams, which have high linear energy transfer and low scatter within the human body, to Spatially Fractionated Radiation Therapy (SFRT) could benefit the treatment of deep-seated or radioresistant tumors. This study aims to simulate the dose distributions of spatially fractionated beams (SFB) to accurately determine the delivered dose and model the cell survival rate following SFB irradiation. Approach Dose distributions of carbon ion beams are calculated using the Triple Gaussian Model.

View Article and Find Full Text PDF

Colorectal cancer (CRC) remains a major global health burden, being one of the most prevalent cancers with high mortality rates. Despite advances in conventional treatment modalities, patients with metastatic CRC often face limited options and poor outcomes. Chimeric antigen receptor-T (CAR-T) cell therapy, initially successful in hematologic malignancies, presents a promising avenue for treating solid tumors, including CRC.

View Article and Find Full Text PDF

Hypoxia-Initiated Supramolecular Free Radicals Induce Intracellular Polymerization for Precision Tumor Therapy.

J Am Chem Soc

January 2025

State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, and MoE Frontiers Science Center for Precision Oncology, University of Macau, Taipa, Macau SAR 999078, China.

Despite the development of various controlled release systems for antitumor therapies, off-target side effects remain a persistent challenge. In situ therapeutic synthesis from biocompatible substances offers a safer and more precise alternative. This study presents a hypoxia-initiated supramolecular free radical system capable of inducing intracellular polymerization, thereby disrupting the cytoskeleton and organelles within 4T1 cells.

View Article and Find Full Text PDF

Current in vitro models of 3D tumor spheroids within the microenvironment have emerged as promising tools for understanding tumor progression and potential drug responses. However, creating spheroids with functional vasculature remains challenging in a controlled and high-throughput manner. Herein, a novel open 3D-microarray platform is presented for a spheroid-endothelium interaction (ODSEI) chip, capable of arraying more than 1000 spheroids on top of the vasculature, compartmentalized for single spheroid-level analysis of drug resistance, and allows for the extraction of specific spheroids for further analysis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!