Solid-State Thin-Film Broadband Short-Wave Infrared Light Emitters.

Adv Mater

ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, Castelldefels, Barcelona, 08860, Spain.

Published: November 2020

Solid-state broadband light emitters in the visible have revolutionized today's lighting technology achieving compact footprints, flexible form factors, long lifetimes, and high energy saving, although their counterparts in the infrared are still in the development phase. To date, broadband emitters in the infrared have relied on phosphor-downconverted light emitters based on atomic optical transitions in transition metal or rare earth elements in the phosphor layer resulting in limited spectral bandwidths in the near-infrared and preventing their integration into electrically driven light-emitting diodes (LEDs). Herein, phosphor-converted LEDs based on engineered stacks of multi-bandgap colloidal quantum dots (CQDs) are reported as a novel class of broadband emitters covering a broad short-wave infrared (SWIR) spectrum from 1050-1650 nm with a full-width-half-maximum of 400 nm, delivering 14 mW of optical power with a quantum efficiency of 5.4% and power conversion efficiency of 13%. Leveraging the electrical conductivity of the CQD stacks, further, the first broadband SWIR-active LED is demonstrated, paving the way toward complementary metal-oxide-semiconductor integrated broadband emitters for on-chip spectrometers and low-cost volume manufacturing. SWIR spectroscopy is employed to illustrate the practical relevance of the emitters in food and material identification case studies.

Download full-text PDF

Source
http://dx.doi.org/10.1002/adma.202003830DOI Listing

Publication Analysis

Top Keywords

light emitters
12
broadband emitters
12
short-wave infrared
8
emitters
7
broadband
6
solid-state thin-film
4
thin-film broadband
4
broadband short-wave
4
infrared
4
infrared light
4

Similar Publications

Visible-light absorbing metal-free organic dyes are of increasing demand for various optoelectronic applications because of their great structure-function tunability through chemical means. Several dyes also show huge potential in triplet photosensitization, generating reactive singlet oxygen. Understanding the structure-property relationships of many well-known fluorescein dyes is of paramount importance in designing next-generation energy efficient dyes, which is currently limited.

View Article and Find Full Text PDF

Carbene-metal-amide (CMA) complexes have diverse applications in luminescence, imaging and sensing. In this study, we designed and synthesized a series of CMA complexes, which were subsequently doped into a PMMA host. These materials demonstrate light-induced dynamic phosphorescence, attributed to their long intrinsic triplet state lifetime (τP,int, in the μs-ms scale), high intersystem crossing (ISC) rate constant (kISC, up to 107 s-1), and bright phosphorescence.

View Article and Find Full Text PDF

Versatile Thermally Activated Delayed Fluorescence Material Enabling High Efficiencies in both Photodynamic Therapy and Deep-Red/NIR Electroluminescence.

ACS Nano

January 2025

Institute of Functional Nano & Soft Materials (FUNSOM), Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, Jiangsu, China.

Thermally activated delayed fluorescence (TADF) materials have received increasing attention from organic electronics to other related fields, such as bioapplications and photocatalysts. However, it remains a challenging task for TADF emitters to showcase the versatility concurrent with high performance in multiple applications. Herein, we first present such a proof-of-concept TADF material, namely, QCN-SAC, through strategically manipulating exciton dynamics.

View Article and Find Full Text PDF

Dimethylacridine based emitters for non-doped organic light-emitting diodes with improved efficiency.

Chem Asian J

January 2025

Fujian Agriculture and Forestry University, College of Materials Engineering, No. 63, Xiyuangong Road, Minhou County, 350108, Fuzhou, CHINA.

Organic light-emitting diodes (OLEDs) has been attracting much extensive interest owing to their advantages of high-definition and flexible displays. Many advances have been focused on boosting the efficiency and stability. Two innovative dimethylacridine-based emitters,1,1,2,2-tetrakis(4- (2,7-di-tert-butyl-9,9-dimethylacridin-10(9H)-yl)phenyl ethene (AcTPE), and bis(4-(2,7-di-tert-butyl-9,9-dimethylacridin-10(9H)-yl)phenyl)methanone (Ac2BP) were designed and synthesized, in which TPE-baesed AcTPE presents AIE properties, and with the phenyl as spacer between the DMAC and carbony, aryl-ketone-based Ac2BP doesn't show AIE properties due to the absence of restriction of intramolecular rotations.

View Article and Find Full Text PDF

The development of narrowband emissive, bright, and stable solution-processed organic light-emitting diodes (SP-OLEDs) remains a challenge. Here, a strategy is presented that merges within a single emitter a TADF sensitizer responsible for exciton harvesting and an MR-TADF motif that provides bright and narrowband emission. This emitter design also shows strong resistance to aggregate formation and aggregation-cause quenching.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!