RfaH is a compact two-domain bacterial transcription factor that functions both as a regulator of transcription and an enhancer of translation. Underpinning the dual functional roles of RfaH is a partial but dramatic fold switch, which completely transforms the ~50-amino acid C-terminal domain (CTD) from an all-α state to an all-β state. The fold switch of the CTD occurs when RfaH binds to RNA polymerase (RNAP), however, the details of how this structural transformation is triggered is not well understood. Here we use all-atom Monte Carlo simulations to characterize structural fluctuations and mechanical stability properties of the full-length RfaH and the CTD as an isolated fragment. In agreement with experiments, we find that interdomain contacts are crucial for maintaining a stable, all-α CTD in free RfaH. To probe mechanical properties, we use pulling simulations to measure the work required to inflict local deformations at different positions along the chain. The resulting mechanical stability profile reveals that free RfaH can be divided into a "rigid" part and a "soft" part, with a boundary that nearly coincides with the boundary between the two domains. We discuss the potential role of this feature for how fold switching may be triggered by interaction with RNAP.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/prot.26014 | DOI Listing |
J Am Chem Soc
January 2025
Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States.
The polycrystalline nature of perovskites, stemming from their facile solution-based fabrication, leads to a high density of grain boundaries (GBs) and point defects. However, the impact of GBs on perovskite performance remains uncertain, with contradictory statements found in the literature. We developed a machine learning force field, sampled GB structures on a nanosecond time scale, and performed nonadiabatic (NA) molecular dynamics simulations of charge carrier trapping and recombination in stoichiometric and doped GBs.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
February 2025
Department of Biosphere Sciences and Engineering, Carnegie Institution for Science, Stanford, CA 94305.
Microbial mats are stratified communities often dominated by unicellular and filamentous phototrophs within an exopolymer matrix. It is challenging to quantify the dynamic responses of community members in situ as they experience steep gradients and rapid fluctuations of light. To address this, we developed a binary consortium using two representative isolates from hot spring mats: the unicellular oxygenic phototrophic cyanobacterium OS-B' (Syn OS-B') and the filamentous anoxygenic phototroph MS-CIW-1 (Chfl MS-1).
View Article and Find Full Text PDFPhys Rev Lett
December 2024
Laboratoire PHENIX, Sorbonne Université, CNRS, (Physico-Chimie des Electrolytes et Nanosystèmes Interfaciaux), 4 Place Jussieu, 75005 Paris, France.
In recent years, the theoretical description of electrical noise and fluctuation-induced effects in electrolytes has gained renewed interest, enabled by stochastic field theories like stochastic density functional theory (SDFT). Such models, however, treat solvents implicitly, ignoring their generally polar nature. In the present study, starting from microscopic principles, we derive a fully explicit SDFT theory that applies to ions in a polar solvent.
View Article and Find Full Text PDFGigascience
January 2025
Leibniz Institute for the Analysis of Biodiversity Change, Museum Koenig Bonn, 53113 Bonn, Germany.
Background: In this study, we present an in-depth analysis of the Eurasian minnow (Phoxinus phoxinus) genome, highlighting its genetic diversity, structural variations, and evolutionary adaptations. We generated an annotated haplotype-phased, chromosome-level genome assembly (2n = 50) by integrating high-fidelity (HiFi) long reads and chromosome conformation capture data (Hi-C).
Results: We achieved a haploid size of 940 megabase pairs (Mbp) for haplome 1 and 929 Mbp for haplome 2 with high scaffold N50 values of 36.
Heliyon
January 2025
College of Politics and Governance, Mahasarakham University, Kantharawichai District, Mahasarakham, 44150, Thailand.
The imperative of addressing climate change has accentuated the pivotal role of reducing greenhouse gas emissions and harnessing the potential of community forests. This study meticulously explores the governance structures and mechanisms underpinning greenhouse gas emissions trading within community forests, aimed at curbing carbon emissions, and enhancing adaptive capacities in Thailand. With a central focus on cultivating enduring climate resilience, this research delves into the interplay of community perspectives with greenhouse gas emissions trading mechanisms, while also dissecting the genesis of sustainable strategies in the Thai context.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!