Data presented in this article describe bacterial and fungal repellent properties of 2D-films and 3D-hydrogels made of different recombinantly produced spider silk proteins based on consensus sequences of Araneus diadematus dragline silk proteins (fibroin 3 and 4). Here, the attachment, growth, and microbial colonization of Streptococcus mutans (S. mutans) as well as Candida albicans (C. albicans) on plane and micro-patterned films were visualized by scanning electron microscopy (SEM). Also, microbial viability data are provided of Escherichia coli (E. coli) and Pichia pastoris (P. pastoris) on hydrogels made of eADF4(C16) and eADF4(C16)-RGD, quantified using the Alamar blue assay. Experimental results, design of a post-operative contamination model of microbes with mammalian cells, and methods in the data article refer to the research paper "Engineered spider silk-based 2D and 3D materials prevent microbial infestation" published recently [1].
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7509184 | PMC |
http://dx.doi.org/10.1016/j.dib.2020.106305 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!