AI Article Synopsis

  • The study presents a method to create stable suspension cell lines from 293T cells that produce lentiviral vectors using a single DNA construct, which simplifies the production process compared to the traditional method involving multiple plasmids.
  • These new cell lines can achieve high yields comparable to those from transient transfection and are designed to be easily scaled up in bioreactors, promoting efficient large-scale production.
  • By streamlining the production process and improving stability and yield, this approach aims to enhance patient access to therapies developed using lentiviral vectors.

Article Abstract

Stable suspension producer cell lines for the production of vesicular stomatitis virus envelope glycoprotein (VSVg)-pseudotyped lentiviral vectors represent an attractive alternative to current widely used production methods based on transient transfection of adherent 293T cells with multiple plasmids. We report here a method to rapidly generate such producer cell lines from 293T cells by stable transfection of a single DNA construct encoding all lentiviral vector components. The resulting suspension cell lines yield titers as high as can be achieved with transient transfection, can be readily scaled up in single-use stirred-tank bioreactors, and are genetically and functionally stable in extended cell culture. By removing the requirement for efficient transient transfection during upstream processing of lentiviral vectors and switching to an inherently scalable suspension cell culture format, we believe that this approach will result in significantly higher batch yields than are possible with current manufacturing processes and enable better patient access to medicines based on lentiviral vectors.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7501408PMC
http://dx.doi.org/10.1016/j.omtm.2020.08.011DOI Listing

Publication Analysis

Top Keywords

producer cell
12
cell lines
12
lentiviral vectors
12
transient transfection
12
lentiviral vector
8
single dna
8
dna construct
8
293t cells
8
suspension cell
8
cell culture
8

Similar Publications

Glucanases are widely applied in industrial applications such as brewing, biomass conversion, food, and animal feed. Glucanases catalyze the hydrolysis of glucan to produce the sugar hemiacetal through hydrolytic cleavage of glycosidic bonds. Current study aimed to investigate structural insights of a glucanase from Clostridium perfringens through blind molecular docking, site-specific molecular docking, molecular dynamics (MD) simulation, and binding energy calculation.

View Article and Find Full Text PDF

Hematuria in the ER patient: optimizing detection of upper tract urothelial - A pictorial essay.

Emerg Radiol

January 2025

Department of Radiology and Radiological Science, School of Medicine, Johns Hopkins University, 601 North Caroline Street, Baltimore, MD, 21287-0801, USA.

Upper tract urothelial carcinoma (UTUC) is a rare and challenging subset of the more frequently encountered urothelial carcinomas (UCs), comprising roughly 5-7% of all UCs and less than 10% of all renal tumors. Hematuria is a common presenting symptom in the emergency setting, often prompting imaging to rule out serious etiologies, with UTUC especially posing as a diagnostic challenge. These UTUC lesions of the kidney and ureter are often small, mimicking other pathologies, and are more aggressive than typical UC of the bladder, emphasizing the importance of timely and accurate diagnosis.

View Article and Find Full Text PDF

Upon stimulation and activation, mast cells (MCs) release soluble mediators, including histamine, proteases, and cytokines. These mediators are often stored within cytoplasmic granules in MCs and may be released in a granulated form. The secretion of cytokines and chemokines occurs within hours following activation, with the potential to result in chronic inflammation.

View Article and Find Full Text PDF

Photoactive complexes of bioessential 3d metals, activable within the phototherapeutic window (650-900 nm), have gained widespread interest due to their therapeutic potential. Herein, we report the synthesis, characterization, and light-enhanced anticancer and antibacterial properties of four new dinuclear Co(II) complexes: [Co(phen)(cat)] (Co-1), [Co(dppz)(cat)] (Co-2), [Co(phen)(esc)] (Co-3), and [Co(dppz)(esc)] (Co-4). In these complexes, phen (1,10-phenanthroline) and dppz (dipyrido[3,2-:2',3'-]phenazine) act as neutral N,N-donor ligands, while cat and esc serve as O,O-donor catecholate ligands derived from catechol (1,2-dihydroxybenzene) and esculetin (6,7-dihydroxy coumarin).

View Article and Find Full Text PDF

Current Concepts and Clinical Applications in Cartilage Tissue Engineering.

Tissue Eng Part A

January 2025

Department of Orthopaedics, Massachusetts General Brigham, Boston, MA, USA.

Cartilage injuries are extremely common in the general population, and conventional interventions have failed to produce optimal results. Tissue engineering (TE) technology has been developed to produce neocartilage for use in a variety of cartilage-related conditions. However, progress in the field of cartilage TE has historically been difficult due to the high functional demand and avascular nature of the tissue.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!