To meet the growing demand for global electrical energy storage, high-energy-density electrode materials are required for Li-ion batteries. To overcome the limit of the theoretical energy density in conventional electrode materials based solely on the transition metal redox reaction, the oxygen redox reaction in electrode materials has become an essential component because it can further increase the energy density by providing additional available electrons. However, the increase in the contribution of the oxygen redox reaction in a material is still limited due to the lack of understanding its controlled parameters. Here, it is first proposed that Li-transition metals (TMs) inter-diffusion between the phases in Li-rich materials can be a key parameter for controlling the oxygen redox reaction in Li-rich materials. The resulting Li-rich materials can achieve fully exploited oxygen redox reaction and thereby can deliver the highest reversible capacity leading to the highest energy density, ≈1100 Wh kg among Co-free Li-rich materials. The strategy of controlling Li/transition metals (TMs) inter-diffusion between the phases in Li-rich materials will provide feasible way for further achieving high-energy-density electrode materials via enhancing the oxygen redox reaction for high-performance Li-ion batteries.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7507071PMC
http://dx.doi.org/10.1002/advs.202001658DOI Listing

Publication Analysis

Top Keywords

redox reaction
28
oxygen redox
24
li-rich materials
24
electrode materials
16
li-ion batteries
12
energy density
12
materials
10
fully exploited
8
exploited oxygen
8
co-free li-rich
8

Similar Publications

Sensitive fluorescence turn-on sensing of hydroxyl radical and glucose based on the oxidative degradation of reductive organic cage.

Talanta

January 2025

College of Chemistry and Materials Science, Hunan Engineering Research Center for Monitoring and Treatment of Heavy Metals Pollution in the Upper Reaches of Xiangjiang River, Hengyang Normal University, Hengyang, 421001, China. Electronic address:

The accurate and sensitive quantification of hydroxyl radical (·OH) and glucose is necessary for disease diagnosis and health guidance, but still challenging owing to the low concentration of ·OH and poor water solubility of fluorescent probes. In addition, fluorescent probes may cause secondary pollution to the environment. Here an organic cage was reported as a sensitive fluorescent probe for ·OH and glucose in aqueous solution without serious secondary pollution.

View Article and Find Full Text PDF

A pronounced nucleophilicity in combination with a distinct redox non-innocence is a unique feature of a coordinated ligand, which in the current case, leads to unprecedented carbon-centered reactivity patterns: A carbodiphosphorane-based (CDP) pincer-type rhodium complex allows to cleave two C-Cl-bonds of geminal dichlorides via two consecutive SN2-type oxidative additions resulting in the formation of a stabilized carbene fragment. In the presence of a suitable reductant the carbene fragment can even be converted into olefines or hydrodehalogenation products in a catalytic reaction. The developed method can also be used to convert chlorofluorocarbons (CFCs) such as CH2ClF to fluoromethane and methane.

View Article and Find Full Text PDF

The abundance and behaviour of all hematopoietic components display daily oscillations, supporting the involvement of circadian clock mechanisms. The daily variations of immune cell functions, such as trafficking between blood and tissues, differentiation, proliferation, and effector capabilities are regulated by complex intrinsic (cell-based) and extrinsic (neuro-hormonal, organism-based) mechanisms. While the role of the transcriptional/translational molecular machinery, driven by a set of well-conserved genes (Clock genes), in nucleated immune cells is increasingly recognized and understood, the presence of non-transcriptional mechanisms remains almost entirely unexplored.

View Article and Find Full Text PDF

MgCo(OH)@C as an electrode for supercapacitors: effect of doping level on energy storage capability.

Dalton Trans

January 2025

Hubei Key Laboratory for Processing and Application of Catalytic Materials, Huanggang Normal University, Huanggang 438000, China.

Incorporating non-electrochemically active elements (such as Zn and Mg) into the framework of active components can enhance structural stability, leading to improved cycling performance. However, limited research has been conducted on the impact of varying doping concentrations. In this study, we conducted a comprehensive analysis of how different levels of Mg doping in Co(OH) affect the supercapacitor performance.

View Article and Find Full Text PDF

The present investigation delves into the redox reaction between -chlorophenol (-CP) and hexacyanoferrate(III) [HCF(III)], catalyzed by Ag(I) in an alkaline environment. Findings reveal a first-order dependence on both -CP and the oxidant, and the reaction rate showcased a first-order reaction towards Ag(I), which was further amplified by the medium as per the equation = + [OH]. Interestingly, the ionic strength remained unchanged throughout the reaction, exerting no discernible effect on the reaction rate.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!