Piezoelectric and ferroelectric materials have garnered significant interest owing to their excellent physical properties and multiple potential applications. Accordingly, the need for evaluating piezoelectric and ferroelectric properties has also increased. The piezoelectric and ferroelectric properties are evaluated macroscopically using laser interferometers and polarization-electric field loop measurements. However, as the research focus is shifted from bulk to nanosized materials, scanning probe microscopy (SPM) techniques have been suggested as an alternative approach for evaluating piezoelectric and ferroelectric properties. In this Progress Report, the recent progress on the nanoscale evaluation of piezoelectric and ferroelectric properties of diverse materials using SPM-based methods is summarized. Among the SPM techniques, the focus is on recent studies that are related to piezoresponse force microscopy and conductive atomic force microscopy; further, the utilization of these two modes to understand piezoelectric and ferroelectric properties at the nanoscale level is discussed. This work can provide guidelines for evaluating the piezoelectric and ferroelectric properties of materials based on SPM techniques.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7507502 | PMC |
http://dx.doi.org/10.1002/advs.201901391 | DOI Listing |
ACS Appl Mater Interfaces
January 2025
Guangxi Key Lab of Optical and Electronic Functional Materials and Devices; Collaborative Innovation Center for Exploration of Nonferrous Metal Deposits and Efficient Utilization of Resources; College of Materials Science and Engineering, Guilin University of Technology, Guilin, Guangxi 541004, China.
Piezoelectric energy harvesters (PEHs) have attracted much attention due to their efficient harvesting of vibrational energy from the ambient environment, which demonstrates great potential applications. Unfortunately, their low energy density severely hinders the further development of PEHs. Therefore, it is highly desirable to search for piezoelectric materials with a high transduction coefficient ( × ).
View Article and Find Full Text PDFNat Commun
December 2024
School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing, Nanjing, China.
Ferroelectric films are highly sought-after in micro-electro-mechanical systems, particularly with the trend towards miniaturization. However, their tendency to depolarize and degradation in piezoelectric properties when exposed to packaging procedures at temperatures exceeding 260 °C remains a significant challenge. Here, we reveal the prerequisites for self-poling and leverage these insights to achieve unprecedented macroscopic performance through a two-step approach involving texture construction and hierarchical heterogeneity engineering.
View Article and Find Full Text PDFAdv Mater
December 2024
Wuzhen Laboratory, Jiaxing, 314500, P. R. China.
Phase boundary is highly recognized for its capability in engineering various physical properties of ferroelectrics. Here, field-induced polarization rotation is reported in a high-performance (K, Na)NbO-based ferroelectric system at the rhombohedral-tetragonal phase boundary. First, the lattice structure is examined from both macroscopic and local scales, implementing Rietveld refinement and pair distribution function analysis, respectively.
View Article and Find Full Text PDFInorg Chem
December 2024
School of Materials Science and Engineering, Shanghai Institute of Technology, Shanghai 201418, P. R. China.
Organic-inorganic hybrid ferroelectrics have attracted considerable attention due to their outstanding piezoelectricity, mechanical flexibility, and robust nonlinear optical properties. But the species with above room-temperature (RT) ferroelectricity, visible-light bandgap, and high photoelectric performance are still scarce. Herein, a novel organic-inorganic hybrid ferroelectric [CNH][SbI] has been synthesized hydrothermally and employed as a light-absorbing layer in organic-inorganic hybrid solar cells.
View Article and Find Full Text PDFNanoscale
December 2024
Regional Leading Research Center for Smart Energy System, Kyungpook National University, Daegu 41566, Korea.
As a leading Pb-free perovskite material (ABO-type), potassium sodium niobate (K,Na)NbO (KNN)-based ferroelectrics/piezoelectrics have been widely used in electronics, energy conversion, and storage due to their exceptional ability to interconvert mechanical and electrical energies. Beyond traditional applications, the piezoelectric potential generated by mechanical strain or stress modifies their energy band structures and facilitates charge carrier separation and transport, drawing increasing attention in emerging fields such as piezocatalysis and photo-piezocatalysis. With excellent piezoelectric properties, chemical/thermal stability, and strain-tuning capability, KNN-based materials show great promise for high-performance piezocatalytic applications.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!