Skeletal muscle development and regeneration are tightly regulated processes. How the intracellular organization of muscle fibers is achieved during these steps is unclear. Here, we focus on the cellular and physiological roles of amphiphysin 2 (BIN1), a membrane remodeling protein mutated in both congenital and adult centronuclear myopathies (CNM), that is ubiquitously expressed and has skeletal muscle-specific isoforms. We created and characterized constitutive muscle-specific and inducible homozygous and heterozygous knockout mice targeting either ubiquitous or muscle-specific isoforms. Constitutive -deficient mice died at birth from lack of feeding due to a skeletal muscle defect. T-tubules and other organelles were misplaced and altered, supporting a general early role for BIN1 in intracellular organization, in addition to membrane remodeling. Although restricted deletion of in unchallenged adult muscles had no impact, the forced switch from the muscle-specific isoforms to the ubiquitous isoforms through deletion of the in-frame muscle-specific exon delayed muscle regeneration. Thus, ubiquitous BIN1 function is necessary for muscle development and function, whereas its muscle-specific isoforms fine tune muscle regeneration in adulthood, supporting that BIN1 CNM with congenital onset are due to developmental defects, whereas later onset may be due to regeneration defects.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7710016PMC
http://dx.doi.org/10.1242/dmm.044354DOI Listing

Publication Analysis

Top Keywords

muscle-specific isoforms
16
skeletal muscle
12
muscle development
12
physiological roles
8
development function
8
intracellular organization
8
membrane remodeling
8
muscle regeneration
8
muscle
7
isoforms
6

Similar Publications

This study assessed postmortem proteolysis over 14 d in bovine Masseter (MS), Longissimus thoracis (LT), and Cutaneous trunci (CT) muscles. First, the metabolic, contractile, and connective tissue properties were characterized to establish their intrinsic differences. The MS contained the highest levels of oxidative markers and myosin heavy chain-I (MyHC-I), whereas the CT possessed the greatest glycolytic capacity, MyHC-IIx, and connective tissue proteins (P < 0.

View Article and Find Full Text PDF

The Spatial-Temporal Alternative Splicing Profile Reveals the Functional Diversity of FXR1 Isoforms in Myogenesis.

Adv Sci (Weinh)

December 2024

Kunpeng Institute of Modern Agriculture at Foshan, Agricultural Genomics Institute, Chinese Academy of Agricultural Sciences, Foshan, 528226, China.

Alternative splicing (AS) is a fundamental mechanism contributing to proteome diversity, yet its comprehensive landscape and regulatory dynamics during skeletal muscle development remain largely unexplored. Here, the temporal AS profiles are investigated during myogenesis in five vertebrates, conducting comprehensive profiling across 27 developmental stages in skeletal muscle and encompassing ten tissues in adult pigs. The analysis reveals a pervasive and evolutionarily conserved pattern of alternative exon usage throughout myogenic differentiation, with hundreds of skipped exons (SEs) showing developmental regulation, particularly within skeletal muscle.

View Article and Find Full Text PDF

Skeletal muscle from TBC1D4 p.Arg684Ter variant carriers is severely insulin resistant but exhibits normal metabolic responses during exercise.

Nat Metab

December 2024

August Krogh Section for Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark.

In the Greenlandic Inuit population, 4% are homozygous carriers of a genetic nonsense TBC1D4 p.Arg684Ter variant leading to loss of the muscle-specific isoform of TBC1D4 and an approximately tenfold increased risk of type 2 diabetes. Here we show the metabolic consequences of this variant in four female and four male homozygous carriers and matched controls.

View Article and Find Full Text PDF

Skeletal muscle cells (myofibers) are elongated non-mitotic, multinucleated syncytia that have adapted a microtubule lattice. Microtubule-associated proteins (MAPs) play roles in regulating microtubule architecture. The most abundant MAP in skeletal muscle is MAP4.

View Article and Find Full Text PDF

The present study aimed to investigate the effects of 12 weeks of resistance training (RT) on body composition [fat mass (FM), lean body mass (LBM)], muscle quality upper and lower (MQU, MQL), muscle size [cross sectional area (CSA), quadriceps cross-sectional area (QCSA)], biomarkers of neuromuscular junctions [C-terminal agrin fragment (CAF)], and muscle protein turnover [N-terminal peptide (P3NP), 3-methylhistidine (3MH), skeletal muscle-specific isoform of troponin T (sTnT)] in older men. Thirty elderly men (age 66.23 ± 0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!