Hindbrain catecholamine (CA) neurons are essential for elicitation of protective counterregulatory responses (CRRs) to glucose deficit, including increased feeding and elevation of circulating corticosterone, epinephrine, and glucose. Severe or repeated antecedent glucoprivation results in attenuation of these CRRs and failure to correct glucose deficit, constituting a potentially lethal condition known as hypoglycemia-associated autonomic failure (HAAF) that may occur in patients with diabetes on insulin therapy. Recently, we demonstrated that selective pharmacogenetic activation of CA neuron subpopulations in the ventrolateral medulla during normoglycemia elicits these CRRs in a site-specific manner. In the present experiment, we examined the effect of repeated pharmacogenetic activation of CA neurons in the A1/C1 cell group on subsequent elicitation of feeding, corticosterone secretion, and respiratory quotient. We found that this prior treatment attenuated these responses to subsequent pharmacogenetic stimulation, similar to attenuation of these CRRs following repeated antecedent glucoprivation. This suggests that functional impairment of A1/C1 CA neurons resulting from antecedent glucoprivation may account, at least in part, for impairment of specific CRRs critical for restoration of normoglycemia in response to glucose deficit. Thus, a pharmacogenetic approach to selective activation of key neural circuits could provide a means of identifying neuropathogenic mechanisms contributing to HAAF.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7679776PMC
http://dx.doi.org/10.2337/db20-0402DOI Listing

Publication Analysis

Top Keywords

glucose deficit
12
antecedent glucoprivation
12
repeated pharmacogenetic
8
ventrolateral medulla
8
repeated antecedent
8
attenuation crrs
8
pharmacogenetic activation
8
crrs
5
repeated
4
pharmacogenetic catecholamine
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!