T cells must migrate to encounter antigen-presenting cells and perform their roles in host defense. Here, we found that autocrine stimulation of the purinergic receptor P2Y11 regulates the migration of human CD4 T cells. P2Y11 receptors redistributed from the front to the back of polarized cells where they triggered intracellular cAMP/PKA signals that attenuated mitochondrial metabolism at the back. The absence of P2Y11 receptors at the front of cells resulted in hotspots of mitochondrial metabolism and localized ATP production that stimulated P2X4 receptors, Ca influx, and pseudopod protrusion at the front. This regulatory function of P2Y11 receptors depended on their subcellular redistribution and autocrine stimulation by cellular ATP release and was perturbed by indiscriminate global stimulation. We conclude that excessive extracellular ATP-such as in response to inflammation, sepsis, and cancer-disrupts this autocrine feedback mechanism, which results in defective T cell migration, impaired T cell function, and loss of host immune defense.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8826773PMC
http://dx.doi.org/10.1126/scisignal.aba3300DOI Listing

Publication Analysis

Top Keywords

mitochondrial metabolism
12
p2y11 receptors
12
purinergic receptor
8
receptor p2y11
8
autocrine stimulation
8
p2y11
5
cells
5
p2y11 choreographs
4
choreographs polarization
4
polarization mitochondrial
4

Similar Publications

Metabolic abnormalities associated with liver disease have a significant impact on the risk and prognosis of cholecystitis. However, the underlying mechanism remains to be elucidated. Here, we investigated this issue using Wilson's disease (WD) as a model, which is a genetic disorder characterized by impaired mitochondrial function and copper metabolism.

View Article and Find Full Text PDF

Introduction: The efficacy, safety, optimal timing, and urate-lowering effects of surgical interventions in gout management remain poorly understood. This study aims to fill this gap by evaluating the role of surgery in treating gout patients with tophi.

Method: A retrospective analysis was conducted on 28 gout patients presenting with tophi.

View Article and Find Full Text PDF

Oxygen controls most metazoan metabolism, yet in mammals, tissue O levels vary widely. While extensive research has explored cellular responses to hypoxia, understanding how cells respond to physiologically high O levels remains uncertain. To address this problem, we investigated respiratory epithelia as their contact with air exposes them to some of the highest O levels in the body.

View Article and Find Full Text PDF

Mx proteins, first identified in mammals, encode potent antiviral activity against a wide range of viruses. Mx proteins arose within the Dynamin superfamily of proteins (DSP), which mediate critical cellular processes, such as endocytosis and mitochondrial, plastid, and peroxisomal dynamics. Despite their crucial role, the evolutionary origins of Mx proteins are poorly understood.

View Article and Find Full Text PDF

Although viruses subvert innate immune pathways for their replication, there is evidence they can also co-opt antiviral responses for their benefit. The ubiquitous human pathogen, Herpes simplex virus-1 (HSV-1), encodes a protein (UL12.5) that induces the release of mitochondrial nucleic acid into the cytosol, which activates immune-sensing pathways and reduces productive replication in nonneuronal cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!