Understanding temporal and spatial hemodynamic heterogeneity as a function of tumor growth or therapy affects the development of novel therapeutic strategies. In this study, we employed eigenspectra multispectral optoacoustic tomography (eMSOT) as a next-generation optoacoustic method to impart high accuracy in resolving tumor hemodynamics during bevacizumab therapy in two types of breast cancer xenografts (KPL-4 and MDA-MB-468). Patterns of tumor total hemoglobin concentration (THb) and oxygen saturation (sO) were imaged in control and bevacizumab-treated tumors over the course of 58 days (KPL-4) and 16 days (MDA-MB-468), and the evolution of functional vasculature "normalization" was resolved macroscopically. An initial sharp drop in tumor sO and THb content shortly after the initiation of bevacizumab treatment was followed by a recovery in oxygenation levels. Rim-core subregion analysis revealed steep spatial oxygenation gradients in growing tumors that were reduced after bevacizumab treatment. Critically, eMSOT imaging findings were validated directly by histopathologic assessment of hypoxia (pimonidazole) and vascularity (CD31). These data demonstrate how eMSOT brings new abilities for accurate observation of entire tumor responses to challenges at spatial and temporal dimensions not available by other techniques today. SIGNIFICANCE: Accurate assessment of hypoxia and vascularization over space and time is critical for understanding tumor development and the role of spatial heterogeneity in tumor aggressiveness, metastasis, and response to treatment.

Download full-text PDF

Source
http://dx.doi.org/10.1158/0008-5472.CAN-20-1011DOI Listing

Publication Analysis

Top Keywords

spatial temporal
8
eigenspectra multispectral
8
multispectral optoacoustic
8
optoacoustic tomography
8
bevacizumab treatment
8
assessment hypoxia
8
tumor
7
resolution spatial
4
temporal heterogeneity
4
heterogeneity bevacizumab-treated
4

Similar Publications

COVID-19 mortality among international migrants in Brazil: spatio-temporal analysis, 2020-2022.

Epidemiol Serv Saude

January 2025

Universidade do Estado do Rio de Janeiro, Departamento de Epidemiologia, Rio de Janeiro, RJ, Brazil.

Objective: To describe the mortality profile and analyze the spatiotemporal distribution of COVID-19 mortality among international migrants residing in Brazil from 2020 to 2022.

Methods: This is a descriptive and ecological cross-sectional study using secondary data. Absolute and relative frequencies of the sociodemographic profile and mortality coefficients (MCs) were analyzed.

View Article and Find Full Text PDF

The role of oscillations in grid cells' toroidal topology.

PLoS Comput Biol

January 2025

Kavli Institute for Systems Neuroscience and Centre for Algorithms in the Cortex, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway.

Persistent homology applied to the activity of grid cells in the Medial Entorhinal Cortex suggests that this activity lies on a toroidal manifold. By analyzing real data and a simple model, we show that neural oscillations play a key role in the appearance of this toroidal topology. To quantitatively monitor how changes in spike trains influence the topology of the data, we first define a robust measure for the degree of toroidality of a dataset.

View Article and Find Full Text PDF

Time-Domain Bound States in the Continuum.

Phys Rev Lett

December 2024

Technion, Department of Electrical and Computer Engineering, Haifa 32000, Israel.

We present the concept of time-domain bound states in continuum. We show that a rapid judiciously designed temporal modulation of the refractive index in a spatially homogenous medium gives rise to a bound state in time, embedded in a continuum of wave numbers. Mathematically, these bound states in the continuum are closed form solutions of the Maxwell equations in time and one-dimensional space.

View Article and Find Full Text PDF

Proximity Ligation Assay to Study Oncogene-Derived Transcription-Replication Conflicts.

J Vis Exp

January 2025

Institute of Biochemistry and Molecular Biology, Hengyang Medical School, University of South China; National Health Commission Key Laboratory of Birth Defect Research and Preventio, Hunan Provincial Maternal and Child Health Care Hospital;

Both DNA replication and RNA transcription utilize genomic DNA as their template, necessitating spatial and temporal separation of these processes. Conflicts between the replication and transcription machinery, termed transcription-replication conflicts (TRCs), pose a considerable risk to genome stability, a critical factor in cancer development. While several factors regulating these collisions have been identified, pinpointing primary causes remains difficult due to limited tools for direct visualization and clear interpretation.

View Article and Find Full Text PDF

Orientation selectivity properties for the affine Gaussian derivative and the affine Gabor models for visual receptive fields.

J Comput Neurosci

January 2025

Computational Brain Science Lab, Division of Computational Science and Technology, KTH Royal Institute of Technology, SE-100 44, Stockholm, Sweden.

This paper presents an in-depth theoretical analysis of the orientation selectivity properties of simple cells and complex cells, that can be well modelled by the generalized Gaussian derivative model for visual receptive fields, with the purely spatial component of the receptive fields determined by oriented affine Gaussian derivatives for different orders of spatial differentiation. A detailed mathematical analysis is presented for the three different cases of either: (i) purely spatial receptive fields, (ii) space-time separable spatio-temporal receptive fields and (iii) velocity-adapted spatio-temporal receptive fields. Closed-form theoretical expressions for the orientation selectivity curves for idealized models of simple and complex cells are derived for all these main cases, and it is shown that the orientation selectivity of the receptive fields becomes more narrow, as a scale parameter ratio , defined as the ratio between the scale parameters in the directions perpendicular to vs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!