Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
In order to improve the biological activity and antibacterial activity of magnesium alloy, the single zinc oxide (ZnO) coating was prepared on magnesium alloys using microwave aqueous synthesis method and followed heat treatment. Then, the coated magnesium alloys were irradiated with ultraviolet (UV) light for different time and subsequently immersed in simulated body fluids (SBF). The influences of UV-irradiated time on the morphology, composition, in vitro biological activity and antibacterial activity were investigated. The results indicated that the ability of the apatite formation on the ZnO coated magnesium alloys surface was significantly enhanced as UV irradiation time prolonged, and the bone-like apatite was formed after UV irradiation for 24 h and then immersing into SBF for 2 weeks, the newly formed apatite was dense and integrate, implying that UV irradiation could activate ZnO coating to improve the biological activity. Moreover, after immersing in SBF for 2 weeks, the antibacterial experiment results demonstrated that ZnO coated magnesium alloys with UV irradiation time of 24 h exhibited more effective antibacterial activity than those of naked magnesium alloys and ZnO coated magnesium alloys which were not irradiated by ultraviolet (UV) light. This work afforded a surface strategy for designing magnesium alloy implant with desirable osseointegration ability and antibacterial property simultaneously for orthopedic and dental applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.msec.2020.110997 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!