Photocatalytic reduction and anti-bacterial activity of biosynthesized silver nanoparticles against multi drug resistant Staphylococcus saprophyticus BDUMS 5 (MN310601).

Mater Sci Eng C Mater Biol Appl

State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, PR China; State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, PR China. Electronic address:

Published: September 2020

In this study, silver nanoparticles (Ag NPs) was eco-friendly synthesized using purified flavonoid rich content of Morinda citrifolia (M. citrifolia) extract. The synthesized Ag NPs was exhibited at 420 nm in UV-spectrometer, and surface morphology with available chemical composition, shape and size of the Ag NPs were confirmed by X-ray diffraction (XRD) variation, scanning electron microscope (SEM) with energy dispersive X-ray spectroscopy (EDX) and transmission electron microscope (TEM). In addition, the excellent phytochemicals and anti-oxidant activity of the Ag NPs were confirmed by total anti-oxidant and DPPH free radical scavenging assays. Further, the concentration dependent inhibition of synthesized Ag NPs against biofilm forming Staphylococcus aureus (S. aureus) was confirmed by minimum inhibition concentration (MIC). The growth cells were arrested in the log phase of the culture and detected by flow cytometry analysis. In addition, the bacterial viability, exopolysaccharide degradation, intracellular membrane damage, matured biofilm inhibition, architectural damage and morphological alteration were confirmed by confocal laser scanning electron microscope (CLSM) and SEM. Furthermore, the synthesized Ag NPs reacted with methylene blue (MB) dye molecules has 100% degradation at an irradiation time of 140 min. Conclusively, the eco-friendly synthesized Ag NPs has excellent anti-oxidant, anti-bacterial through intracellular membrane damage, cell cycle arrest and methylene blue dye removal.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.msec.2020.111024DOI Listing

Publication Analysis

Top Keywords

synthesized nps
16
electron microscope
12
silver nanoparticles
8
eco-friendly synthesized
8
nps confirmed
8
scanning electron
8
intracellular membrane
8
membrane damage
8
methylene blue
8
blue dye
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!