In this paper, we tried to create a contractile model from proteins of the catch muscle of the Gray mussel, similar to the well-described suspension contractile model of vertebrate skeletal muscles. This model makes it possible to characterize the processes in the reconstructed contractile apparatus with the help of monitoring the two characteristics of muscle suspensions - the optical density and the particle size. Contractile model of the catch muscle we constructed was the simplest model consisting of two proteins, actin and myosin. During this work we compared the optical manifestations of the contraction and relaxation states of constructed model with earlier data on the actomyosin suspension of skeletal muscles. It appeared that the approach used in the study of skeletal muscle actomyosin relaxing - the use of an increased amount of ATP - cannot be applied to the contractile model of the molluscan catch muscle. Nevertheless we managed to reach relaxed state of this model with modifying calcium concentration. As a result, we laid the foundation for further reconstruction of the third state of the catch muscle - the catch tone.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bbrc.2020.09.086 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!