Structural basis for stereospecificity to d-amino acid of glycine oxidase from Bacillus cereus ATCC 14579.

Biochem Biophys Res Commun

School of Life Sciences, KNU Creative BioResearch Group, Kyungpook National University, Daehak-ro 80, Buk-ku, Daegu, 41566, Republic of Korea; KNU Institute for Microorganisms, Kyungpook National University, Daehak-ro 80, Buk-ku, Daegu, 41566, Republic of Korea. Electronic address:

Published: December 2020

Glycine oxidase (GO) is an enzyme that catalyzes the oxidation of the primary and secondary amines of various chemicals, including glycine, and the enzyme has been applied in a variety of fields, such as biosensor and genetically modified glyphosate resistance plants. Here, we report that the gene product of BC0747 from Bacillus cereus (BcGO) shows oxidase activity for glycine and small d-amino acids, such as d-proline and d-alanine. We also determined the crystal structure of BcGO complexed with the FAD cofactor at a 2.36 Å resolution and revealed how the cofactor binds to the deep pocket of the enzyme. We performed the molecular docking calculation of the glycine substrate to the BcGO structure and identified how the carboxyl- and amine-groups of the d-amino acid are stabilized at the substrate binding site. Structural analysis of BcGO also provided information on the structural basis for the stereospecificity of the enzyme to d-amino acids. In addition, we placed the glyphosate molecule, a plant herbicide, at the substrate binding site, and explained how the mutation of Gly51 to arginine enhances enzyme activity.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbrc.2020.09.093DOI Listing

Publication Analysis

Top Keywords

structural basis
8
basis stereospecificity
8
d-amino acid
8
glycine oxidase
8
bacillus cereus
8
d-amino acids
8
substrate binding
8
binding site
8
glycine
5
enzyme
5

Similar Publications

SMORE: spatial motifs reveal patterns in cellular architecture of complex tissues.

Genome Biol

January 2025

Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, 90095, CA, USA.

Deciphering the link between tissue architecture and function requires methods to identify and interpret patterns in spatial arrangement of cells. We present SMORE, an approach to detect patterns in sequential arrangements of cells and examine their associated gene expression specializations. Applied to retina, brain, and embryonic tissue maps, SMORE identifies novel spatial motifs, including one that offers a new mechanism of action for type 1b bipolar cells.

View Article and Find Full Text PDF

The development and modification of grouting materials constitute crucial factors influencing the effectiveness of grouting. Given the pivotal role of water in the hydration of cement-based composite materials and construction processes, this study proposes an exploratory approach using green, economical magnetized water technology to enhance the performance of cement grouts. The research systematically investigates the effects of magnetized water on the fundamental grouting properties (stability, rheological behavior, and stone body strength) of cement grouts, prepared under varying magnetization conditions (including magnetic intensity, water flow speed, and cycle times).

View Article and Find Full Text PDF

Structural basis of human VANGL-PRICKLE interaction.

Nat Commun

January 2025

State Key Laboratory of Membrane Biology, Peking University-Tsinghua University-National Institute of Biological Sciences Joint Graduate Program, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China.

Planar cell polarity (PCP) is an evolutionarily conserved process for development and morphogenesis in metazoans. The well-organized polarity pattern in cells is established by the asymmetric distribution of two core protein complexes on opposite sides of the cell membrane. The Van Gogh-like (VANGL)-PRICKLE (PK) pair is one of these two key regulators; however, their structural information and detailed functions have been unclear.

View Article and Find Full Text PDF

Objectives: This study aimed to explore the ethical challenges faced by healthcare professionals (HCPs) in managing children and adolescents with neurodevelopmental disorders (NDDs) in Lebanon. The primary research question addressed how HCPs navigate ethical dilemmas related to patient autonomy, surrogate decision-making and communication in the context of severe cognitive impairments.

Design: Qualitative, cross-sectional study using semi-structured interviews.

View Article and Find Full Text PDF

Applying AI to Structured Real-World Data for Pharmacovigilance Purposes: Scoping Review.

J Med Internet Res

December 2024

Laboratoire d'Informatique Médicale et d'Ingénierie des Connaissances en e-Santé - LIMICS, Inserm, Université Sorbonne Paris-Nord, Sorbonne Université, Paris, France.

Background: Artificial intelligence (AI) applied to real-world data (RWD; eg, electronic health care records) has been identified as a potentially promising technical paradigm for the pharmacovigilance field. There are several instances of AI approaches applied to RWD; however, most studies focus on unstructured RWD (conducting natural language processing on various data sources, eg, clinical notes, social media, and blogs). Hence, it is essential to investigate how AI is currently applied to structured RWD in pharmacovigilance and how new approaches could enrich the existing methodology.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!