It is often suggested that due to climate and environmental policy changes, the risk from tick-borne disease is increasing, particularly at the geographical limits of the vector distribution. Our project aimed to determine whether this was true for the risk of Lyme borreliosis in Ireland which is the western-most limit of Ixodes ricinus, the European vector of Borrelia burgdorferi sensu lato. The availability of a historical data set of tick infection rates compiled in the 1990s represented a unique opportunity as it provided a baseline against which current data could be compared. Following construction of a spatial predictive model for the presence and absence of I. ricinus based on data from 491 GPS locations visited between 2016 and 2019, 1404 questing nymphs from 27 sites were screened for the presence of Borrelia spp. using a TaqMan PCR aimed at the 23S rRNA gene sequence. All positive ticks were further analysed by nested PCR amplification and sequence analysis of the 5 S-23 S intergenic spacer. The model indicated that areas with the highest probability of tick presence were mostly located along the western seaboard and the Shannon and Erne river catchments, coinciding with historical high incidence areas of bovine babesiosis, while the infection rate of questing nymphs with B. burgdorferi s.l. and the prevalence of the various genospecies have remained surprisingly stable over the last 3 decades. Clear communication of the potential disease risk arising from a tick bite is essential in order to allay undue concerns over tick-borne diseases among the general public.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ttbdis.2020.101518DOI Listing

Publication Analysis

Top Keywords

ixodes ricinus
8
borrelia burgdorferi
8
burgdorferi sensu
8
sensu lato
8
questing nymphs
8
update presence
4
presence ixodes
4
ricinus western
4
western limit
4
limit range
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!