Background: Despite controversies, epinephrine remains a mainstay of cardiopulmonary resuscitation (CPR). Recent animal studies have suggested that epinephrine may decrease cerebral blood flow (CBF) and cerebral oxygenation, possibly potentiating neurological injury during CPR. We investigated the cerebrovascular effects of intravenous epinephrine in a swine model of pediatric in-hospital cardiac arrest. The primary objectives of this study were to determine if (1) epinephrine doses have a significant acute effect on CBF and cerebral tissue oxygenation during CPR and (2) if the effect of each subsequent dose of epinephrine differs significantly from that of the first.
Methods: One-month-old piglets (n = 20) underwent asphyxia for 7 min, ventricular fibrillation, and CPR for 10-20 min. Epinephrine (20 mcg/kg) was administered at 2, 6, 10, 14, and 18 min of CPR. Invasive (laser Doppler, brain tissue oxygen tension [PbtO]) and noninvasive (diffuse correlation spectroscopy and diffuse optical spectroscopy) measurements of CBF and cerebral tissue oxygenation were simultaneously recorded. Effects of subsequent epinephrine doses were compared to the first.
Results: With the first epinephrine dose during CPR, CBF and cerebral tissue oxygenation increased by > 10%, as measured by each of the invasive and noninvasive measures (p < 0.001). The effects of epinephrine on CBF and cerebral tissue oxygenation decreased with subsequent doses. By the fifth dose of epinephrine, there were no demonstrable increases in CBF of cerebral tissue oxygenation. Invasive and noninvasive CBF measurements were highly correlated during asphyxia (slope effect 1.3, p < 0.001) and CPR (slope effect 0.20, p < 0.001).
Conclusions: This model suggests that epinephrine increases CBF and cerebral tissue oxygenation, but that effects wane following the third dose. Noninvasive measurements of neurological health parameters hold promise for developing and directing resuscitation strategies.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7522922 | PMC |
http://dx.doi.org/10.1186/s13054-020-03297-4 | DOI Listing |
PLoS One
January 2025
Psychology Department, Rutgers, The State University of New Jersey, Newark, NJ, United States of America.
Aphasia, a communication disorder caused primarily by left-hemisphere stroke, affects millions of individuals worldwide, with up to 70% experiencing significant reading impairments. These deficits negatively impact independence and quality of life, highlighting the need for effective treatments that target the cognitive and neural processes essential to reading recovery. This Randomized Clinical Trial (RCT) aims to test the efficacy of a combined intervention incorporating aerobic exercise training (AET) and phono-motor treatment (PMT) to enhance reading recovery in individuals with post-stroke aphasia.
View Article and Find Full Text PDFJ Appl Physiol (1985)
January 2025
Centre for Heart, Lung and Vascular Health, University of British Columbia - Okanagan Campus, Kelowna, BC, Canada.
Serotonin (5-HT) is integral to signalling in areas of the brainstem controlling ventilation and is involved in central chemoreception. Selective serotonin reuptake inhibitors (SSRIs), used to effectively increase 5-HT concentrations, are commonly prescribed for depression. The effects of SSRIs on the control of breathing and the potential influence of cerebral blood flow (CBF) have not been directly assessed.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Radiology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA.
The alteration of neurovascular coupling (NVC), where acute localized blood flow increases following neural activity, plays a key role in several neurovascular processes including aging and neurodegeneration. While not equivalent to NVC, the coupling between simultaneously measured cerebral blood flow (CBF) with arterial spin labeling (ASL) and blood oxygenation dependent (BOLD) signals, can also be affected. Moreover, the acquisition of BOLD data allows the assessment of resting state (RS) fMRI metrics.
View Article and Find Full Text PDFJ Alzheimers Dis
January 2025
Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore.
Blood-brain barrier (BBB) dysfunction is suggested to be a potential mediator between vascular risk factors and cognitive impairment, leading to vascular cognitive impairment. To investigate the relationships between age, sex, and vascular risk factors and BBB water permeability as well as their relationship with cognition. To measure BBB permeability, a novel arterial spin labelling MRI technique (ME-ASL) was applied to derive the time of exchange (Tex), arterial time transit (ATT), and cerebral blood flow (CBF).
View Article and Find Full Text PDFChin Med J (Engl)
January 2025
Beijing Institute of Basic Medical Sciences, Beijing 100850, China.
Background: Neurological dysfunction is a common complication of traumatic brain injury (TBI), and early treatments are critical for the long-term prognosis. This study aimed to investigate whether hypidone hydrochloride (YL-0919) improves neurological function impairment in mice with TBI.
Methods: TBI was induced in adult male C57BL/6J mice using the controlled cortical impact (CCI) method.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!