Traumatic brain injury (TBI) produces microstructural damage to white matter pathways connecting neural structures in pre-frontal and striatal regions involved in self-regulation (SR). Dorsal and ventral frontostriatal pathways have been linked to cognitive ("cool") and emotional ("hot") SR, respectively. We evaluated the relation of frontostriatal pathway fractional anisotropy (FA) 2 months post-TBI on cool and hot SR assessed 7 months post-TBI. Participants were 8-15 years of age, including children with uncomplicated mild TBI (mTBI;  = 24), more severe TBI (complicated-mild, moderate, severe [cms]TBI;  = 60), and typically developing (TD) children ( = 55). Diffusion tensor tractography was used to map frontostriatal pathways. Cool SR included focused and sustained attention performance, and parent-reported attention, whereas hot SR included risk-taking performance and parent-reported emotional control. Multivariate general linear models showed that children with cmsTBI had greater parent-reported cool and hot SR difficulties and lower dorsal and ventral FA than TD children. Focused attention, risk taking, and emotional control correlated with FA of specific dorsal and ventral pathways; however, only the effect of TBI on focused attention was mediated by integrity of dorsal pathways. Results suggest that frontostriatal FA may serve as a biomarker of risk for SR difficulties or to assess response to interventions targeting SR in pediatric TBI and in broader neurodevelopmental populations.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7757529PMC
http://dx.doi.org/10.1089/neu.2019.6937DOI Listing

Publication Analysis

Top Keywords

dorsal ventral
12
white matter
8
traumatic brain
8
brain injury
8
frontostriatal pathways
8
months post-tbi
8
cool hot
8
performance parent-reported
8
emotional control
8
focused attention
8

Similar Publications

Background: Traumatic anterior shoulder dislocation is the most common type of joint dislocation, with an incidence of 11 to 29 per 100 000 persons per year. Controversy still surrounds the recommendations for treatment and the available procedures for surgical stabilization.

Methods: This review is based on pertinent publications (2014-2024) that were retrieved by a selective search in the PubMed and Google Scholar databases.

View Article and Find Full Text PDF

In contrast to blood-oxygenation level-dependent (BOLD) functional MRI (fMRI), which relies on changes in blood flow and oxygenation levels to infer brain activity, diffusion fMRI (DfMRI) investigates brain dynamics by monitoring alterations in the apparent diffusion coefficient (ADC) of water. These ADC changes may arise from fluctuations in neuronal morphology, providing a distinctive perspective on neural activity. The potential of ADC as an fMRI contrast (ADC-fMRI) lies in its capacity to reveal neural activity independently of neurovascular coupling, thus yielding complementary insights into brain function.

View Article and Find Full Text PDF

Connectional differences between humans and macaques in the MT+ complex.

iScience

January 2025

State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.

MT+ is pivotal in the dorsal visual stream, encoding tool-use characteristics such as motion speed and direction. Despite its conservation between humans and monkeys, differences in MT+ spatial location and organization may lead to divergent, yet unexplored, connectivity patterns and functional characteristics. Using diffusion tensor imaging, we examined the structural connectivity of MT+ subregions in macaques and humans.

View Article and Find Full Text PDF

Central projections of nociceptive input originating from the low back and limb muscle in rats.

Sci Rep

January 2025

Department of Physical Therapy, Faculty of Rehabilitation, Niigata University of Health and Welfare, 1398 Shimami-cho, Kita-ku, Niigata, 950-3198, Japan.

Since clinical features of chronic muscle pain originating from the low back and limbs are different (higher prevalence and broader/duller sensation of low back muscle pain than limb muscle pain), spinal and/or supraspinal projection of nociceptive information could differ between the two muscles. We tested this hypothesis using c-Fos immunohistochemistry combined with retrograde-labeling of dorsal horn (DH) neurons projecting to ventrolateral periaqueductal grey (vlPAG) or ventral posterolateral nucleus of the thalamus (VPL) by fluorogold (FG) injections into the vlPAG or VPL. C-Fos expression in the DH was induced by injecting 5% formalin into the multifidus (MF, low back) or gastrocnemius-soleus (GS, limb) muscle.

View Article and Find Full Text PDF

The forebrain is the most complex region of the vertebrate CNS, and its developmental organisation is controversial. We fate-mapped the embryonic chick forebrain using lipophilic dyes and Cre-recombination lineage tracing, and built a 4D model of brain growth. We reveal modular patterns of anisotropic growth, ascribed to progenitor regions through multiplex HCR.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!