Autophagy is a cellular housekeeping process that incorporates lysosomal-degradation to maintain cell survival and energy sources. In recent decades, the role of autophagy has implicated in the initiation and development of many diseases that affect humanity. Among these diseases are autoimmune diseases and neurodegenerative diseases, which connected with the lacking autophagy. Other diseases are connected with the increasing levels of autophagy such as cancers and infectious diseases. Therefore, controlling autophagy with sufficient regulators could represent an effective strategy to overcome such diseases. Interestingly, targeting autophagy can also provide a sufficient method to combat the current epidemic caused by the ongoing coronavirus. In this review, we aim to highlight the physiological function of the autophagic process to understand the circumstances surrounding its role in the cellular immunity associated with the development of human diseases.

Download full-text PDF

Source
http://dx.doi.org/10.1080/08820139.2020.1828453DOI Listing

Publication Analysis

Top Keywords

autophagy cellular
8
cellular immunity
8
diseases
8
diseases connected
8
autophagy
6
mechanical autophagy
4
immunity facts
4
facts features
4
features treating
4
treating medical
4

Similar Publications

Background: Coronary artery disease (CAD) has become a dominant economic and health burden worldwide, and the role of autophagy in CAD requires further clarification. In this study, we comprehensively revealed the association between autophagy flux and CAD from multiple hierarchies. We explored autophagy-associated long noncoding RNA (lncRNA) and the mechanisms underlying oxidative stress-induced human coronary artery endothelial cells (HCAECs) injury.

View Article and Find Full Text PDF

Background/aim: Salmonella typhimurium A1-R (A1-R) targets and inhibits a wide range of cancer types without continuously infecting healthy tissue. Chloroquine, an antimalarial drug, induces apoptosis and inhibits autophagy in cancer cells. The aim of the present study was to determine the synergy of A1-R plus chloroquine on HT1080 human fibrosarcoma cells in vitro and in a nude-mouse model.

View Article and Find Full Text PDF

The disease burden of renal cell carcinoma (RCC) has decreased in recent years with advances in treatment, but its pathogeny still remains elusive. We aim to study the role of HOXA3/USP15/SQSTM1 axis on autophagy and M2-type macrophage polarization in RCC. In this study, cell apoptosis and proliferation were assessed by flow cytometry and CCK-8.

View Article and Find Full Text PDF

Nano-sized polystyrene plastics toxicity: Necroptosis pathway caused by autophagy blockade and lysosomal dysfunction.

NanoImpact

December 2024

National Key Laboratory of Veterinary Public Health and Safety. College of Veterinary Medicine, China Agricultural University, Beijing 100093, China. Electronic address:

The persistent detection of nano-sized plastic particles in humans, animals, and animal-derived products underscores the potential impact of these particles on living organisms. Consequently, the toxicology of such particles has emerged as a pivotal research interests in recent years. In this study, NP was synthesized successfully with an average particle size of 100 nm using a emulsion polymerization method as model particles.

View Article and Find Full Text PDF

A Comprehensive Review of Arsenic-Induced Neurotoxicity: Exploring the Role of Glial Cell Pathways and Mechanisms.

Chemosphere

December 2024

Systems Toxicology Group, Food, Drug & Chemical, Environment and Systems Toxicology Division, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow-226001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India. Electronic address:

The review aims to examine the neurotoxic effects of arsenic, particularly exploring the roles of glial cells-astrocytes, microglia, and oligodendrocytes, amid its widespread environmental contamination and impact on cognitive impairments. It highlights the role of altered neurotrophin and growth factor signaling in disrupting neuronal health and cognitive performance. It elucidates the intricate interactions between oxidative stress, DNA damage, neurotransmitter disruption, and cellular signaling alterations, underscoring the vital importance of the glial cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!