This study aims at investigating the effect of ethanol (EtOH) on the textural properties of whey protein and egg white protein hydrogels. The hydrogels were produced by thermally induced gel formation of aqueous protein solutions. The water contained in the gel network was subsequently exchanged by EtOH to assess structural changes upon exposure of hydrogels to ethanolic aqueous phases. The textural properties of the hydrogel and alcogel samples were analyzed by uniaxial compression tests. For both protein sources, the hardness increased exponentially when pH and EtOH concentration were increased. This increase correlated with a shrinkage of the gel samples. The gel texture was found to be elastic at low EtOH concentrations and became stiff and hard at higher EtOH concentrations. It was found that the solvent exchange influences the ion concentration within the gels and, therefore, the interactions between molecules in the gel structure. Non-covalent bonds were identified as substantially responsible for the gel structure.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7582817 | PMC |
http://dx.doi.org/10.3390/molecules25194417 | DOI Listing |
Int J Biol Macromol
January 2025
The Affiliated Qingyuan Hospital (Qingyuan People's Hospital), Guangzhou Medical University, Qingyuan, Guangdong Province 511518, China. Electronic address:
Gelatin/κ-carrageenan (Gel/KC) hydrogel has exhibited a significant potential in tissue engineering, however, there is still a need to further enhance its structural properties. This study developed a Gel/KC dual-network hydrogel with superior mechanical properties and structural stability, which was integrated with 3D printing to evaluate its ability to promote wound healing. The hydrogels with seven different Gel and KC ratios were prepared and characterized using rheological testing, thermal analysis, spectral analysis, micromorphology observation, and X-ray diffraction.
View Article and Find Full Text PDFJ Microbiol Methods
January 2025
National Food Institute, Technical University of Denmark, Henrik Dams Allé, 2800 Kgs. Lyngby, Denmark. Electronic address:
In the food industry, time-to-result is crucial for faster release of products, minimising recalls, mitigation of microbial contamination problems and, ultimately, food safety. Carrageenan is isolated from red seaweed (Rhodophyta) and applied in various foods and beverages as a gelling, thickening, texturing, or stabilizing agent due to its hygroscopic properties. Currently, the standard industry plate count method entails a one-hundred-fold dilution of the sample before mixing with molten agar for assessment of the level of microbial contamination in carrageenan samples prior to business-to-business shipment.
View Article and Find Full Text PDFJ Vis Exp
January 2025
Faculty of Dentistry, Department of Periodontology, Marmara University;
Dental ultrasonic scalers are commonly employed in periodontal treatment; however, their ability to roughen tooth surfaces is a worry since roughness may increase plaque production, a key cause of periodontal disease. This research studied the influence of a piezoelectric ultrasonic scaler on the roughness of two distinct flowable composite filling materials. To do this, 10 disc-shaped samples were generated from each of the two flowable composite materials.
View Article and Find Full Text PDFIn Vitro Model
December 2024
Laboratório de Biologia Básica de Células-Tronco, FIOCRUZ, Rua Professor Algacyr Munhoz Mader, 3775, Instituto Carlos Chagas, Curitiba, Paraná PR 81350-010 Brazil.
Obesity is associated with several comorbidities that cause high mortality rates worldwide. Thus, the study of adipose tissue (AT) has become a target of high interest because of its crucial contribution to many metabolic diseases and metabolizing potential. However, many AT-related physiological, pathophysiological, and toxicological mechanisms in humans are still poorly understood, mainly due to the use of non-human animal models.
View Article and Find Full Text PDFJ Dent Sci
January 2025
Department of Fragrance and Cosmetic Science, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan.
Background/purpose: Various pulp-covering materials offer advantages in regenerative root canal treatment, but each has limitations, highlighting the need for more effective antibacterial strategies for pulp repair and regeneration. Mesoporous bioactive glasses (MBG) show significant biological activity, making them valuable in tissue/dental repair. Silver-incorporated MBG exhibits promising antibacterial effects against various bacteria; copper ions are crucial in regulating angiogenesis signals.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!