spp. are one of the most common fungal pathogens. Biofilms formed by offer resistance mechanisms against most antifungal agents. Therefore, development of new molecules effective against these microorganisms, alone or in combination with antifungal drugs, is extremely necessary. In the present work, we carried out a screening process of different cationic carbosilane dendritic molecules against . In vitro activity against biofilm formation and biofilms was tested in both Colección Española de Cultivos Tipo (CECT) 1002 and clinical strains. Cytotoxicity was studied in human cell lines, and biofilm alterations were observed by scanning electron microscopy (SEM). Antifungal activity of the carbosilane dendritic molecules was assessed by monitoring cell viability using both established and novel cell viability assays. One out of 14 dendritic molecules tested, named BDSQ024, showed the highest activity with a minimum biofilm inhibitory concentration (MBIC) for biofilm formation and a minimum biofilm damaging concentration (MBDC) for existing biofilm of 16-32 and 16 mg/L, respectively. Synergy with amphotericin (AmB) and caspofungin (CSF) at non-cytotoxic concentrations was found. Therefore, dendritic compounds are exciting new antifungals effective at preventing biofilm formation and represent a potential novel therapeutic agent for treatment of infection in combination with existing clinical antifungals.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7601597PMC
http://dx.doi.org/10.3390/pharmaceutics12100918DOI Listing

Publication Analysis

Top Keywords

dendritic molecules
16
biofilm formation
12
vitro activity
8
activity carbosilane
8
carbosilane dendritic
8
cell viability
8
minimum biofilm
8
biofilm
7
dendritic
5
molecules
5

Similar Publications

Type 2 diabetes mellitus (T2DM) is a global health concern, with diabetic neuropathy (DN) being a prevalent complication. Current DN treatments focus on blood glucose control and pain management, which show limited efficacy. This study explored the effects of autologous dendritic cell (DC) administration on improving DN symptoms.

View Article and Find Full Text PDF

Diabetic kidney disease (DKD) significantly increases mortality, with patients facing a fourfold risk of death within ten years. Chronic inflammation, marked by transforming growth factor-β (TGF-β) and intracellular adhesion molecule-1 (ICAM-1) activity, contributes to kidney damage and fibrosis. This study investigates the effect of autologous dendritic cells on inflammation and kidney function, focusing on apparent diffusion coefficient (ADC), TGF-β, and ICAM-1 levels.

View Article and Find Full Text PDF

Interferon-ε loss is elusive 9p21 link to immune-cold tumors, resistant to immune-checkpoint therapy and endogenous CXCL9/10 induction.

J Thorac Oncol

December 2024

Moores Cancer Center, University of California San Diego, La Jolla, CA 92037, USA; Department of Medicine, University of California San Diego, La Jolla, CA 92037, USA; Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.

Introduction: Copy-number (CN) loss of chromosome 9p, or parts thereof, impair immune response and confer ICT resistance by direct elimination of immune-regulatory genes on this arm, notably IFNγ genes at 9p24.1, and type-I interferon (IFN-I) genes at 9p21.3.

View Article and Find Full Text PDF

The synergistic effect induced by "Z-bond" between cations and anions achieving a highly reversible zinc anode.

J Colloid Interface Sci

December 2024

Zhejiang Provincial Engineering Research Center of Oxide Semiconductors for Environmental and Optoelectronic Applications, Institute of Wenzhou, Zhejiang University, Wenzhou 325006, PR China; State Key Laboratory of Silicon and Advanced Semiconductor Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, PR China. Electronic address:

Due to their high energy density, low cost, and environmental friendliness, aqueous zinc-ion batteries are considered a potential alternative to Li-ion batteries. However, dendrite growth and parasitic reactions of water molecules limit their practical applications. Herein, an ionic liquid additive, 1-butyl-3-methylimidazolium Bis(fluorosulfonyl)imide (BMImFSI), is introduced to regulate the electrical double layer (EDL).

View Article and Find Full Text PDF

Controllable reconstruction of lignified biomass with molecular scissors to form carbon frameworks for highly stable Li metal batteries.

Chem Sci

December 2024

Institutes of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Material (Ministry of Education), Anhui University Hefei 230601 China

Lithium metal batteries (LMBs) promise high-energy-density storage but face safety issues due to dendrite-induced lithium deposition, irreversible electrolyte consumption, and large volume changes, which hinder their practical applications. To address these issues, tuning lithium deposition by structuring a host for the lithium metal anode has been recognized as an efficient method. Herein, we report a supercritical water molecular scissor-controlled strategy to form a carbon framework derived from biomass wood.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!