Gelsolin, an actin-remodeling protein, is involved in cell motility, cytoskeletal remodeling, and cytokinesis and is abnormally expressed in many cancers. Recently, human recombinant plasma gelsolin protein (pGSN) was reported to have important roles in cell cycle and maturation of primary erythroblasts. However, the role of human plasma gelsolin in late stage erythroblasts prior to enucleation and putative clinical relevance in patients with myelodysplastic syndrome (MDS) and hemato-oncologic diseases have not been reported. Polychromatic and orthochromatic erythroblasts differentiated from human cord blood CD34+ cells, and human bone marrow (BM) cells derived from patients with MDS, were cultured in serum-free medium containing pGSN. Effects of pGSN on mitochondria, erythroid dysplasia, and enucleation were assessed in cellular and transcriptional levels. With pGSN treatment, terminal maturation at the stage of poly- and ortho-chromatic erythroblasts was enhanced, with higher numbers of orthochromatic erythroblasts and enucleated red blood cells (RBCs). pGSN also significantly decreased dysplastic features of cell morphology. Moreover, we found that patients with MDS with multi-lineage dysplasia or with excess blasts-1 showed significantly decreased expression of gelsolin mRNA () in their peripheral blood. When BM erythroblasts of MDS patients were cultured with pGSN, levels of mRNA transcripts related to terminal erythropoiesis and enucleation were markedly increased, with significantly decreased erythroid dysplasia. Moreover, pGSN treatment enhanced mitochondrial transmembrane potential that is unregulated in MDS and cultured cells. Our findings demonstrate a key role for plasma gelsolin in erythropoiesis and in gelsolin-depleted MDS patients, and raises the possibility that pGSN administration may promote erythropoiesis in erythroid dysplasia.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7583768PMC
http://dx.doi.org/10.3390/ijms21197132DOI Listing

Publication Analysis

Top Keywords

plasma gelsolin
16
erythroid dysplasia
16
role plasma
8
gelsolin protein
8
pgsn
8
orthochromatic erythroblasts
8
patients mds
8
mds cultured
8
pgsn treatment
8
mds patients
8

Similar Publications

Article Synopsis
  • The study aimed to assess how human subjects react to elevated pressures of helium and nitrogen, focusing on inflammatory and oxidative stress responses.
  • Both gases activated neutrophils and led to slight increases in inflammatory markers and urinary IL-6, alongside a decrease in plasma gelsolin, indicating an inflammatory response.
  • The results suggest that typical diving gas exposure can trigger inflammation, which might contribute to decompression sickness, while the mixed oxidative stress responses imply complex interactions within the body's systems.
View Article and Find Full Text PDF
Article Synopsis
  • Research examines how tunnel workers experience high pressure exposure compared to SCUBA divers, focusing on inflammation linked to decompression sickness (DCS).
  • Despite longer high-pressure exposure in tunnel workers (4.1-4.9 hours) versus shorter exposure for divers (0.61 hours), blood analysis showed similar increases in blood microparticles and interleukin levels for both groups.
  • Neutrophil counts and activation were significantly higher in tunnel workers, indicating that while microparticle levels stabilize quickly, neutrophil activation requires more time under high pressure conditions.
View Article and Find Full Text PDF
Article Synopsis
  • - The study investigates the role of plasma gelsolin (pGSN), a protein that breaks down actin filaments, in inflammatory and neurodegenerative diseases, particularly in a mouse model of decompression sickness (DCS).
  • - Mice exposed to high pressure showed a significant decrease in pGSN levels and increased inflammatory microparticles (MPs), which led to neuroinflammation and cognitive/motor function impairments lasting over 12 days.
  • - Administering recombinant human plasma gelsolin (rhu-pGSN) effectively reduced inflammation, restored synaptic protein levels, and improved neurological function, suggesting that rhu-pGSN could be a potential treatment for DCS.
View Article and Find Full Text PDF

Milk Fat Globules: 2024 Updates.

Newborn (Clarksville)

March 2024

Global Newborn Society, Clarksville Maryland, United States of America.

Article Synopsis
  • * MFGs feature a unique structure with a lipid core and a membrane rich in bioactive components that aid in energy release and support immune health in developing gastrointestinal tracts.
  • * Research suggests MFGs can be enhanced to address specific nutritional deficiencies while also having potential therapeutic benefits for neurodevelopment and defense against infections.
View Article and Find Full Text PDF

Real-time analysis of the biomolecular interaction between gelsolin and Aβ monomer and its implication for Alzheimer's disease.

Talanta

January 2025

State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China; School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China. Electronic address:

Biomolecular interaction acts a pivotal part in understanding the mechanisms underlying the development of Alzheimer's disease (AD). Herein, we built a biosensing platform to explore the interaction between gelsolin (GSN) and different β-amyloid protein 1-42 (Aβ) species, including Aβ monomer (m-Aβ), Aβ oligomers with both low and high levels of aggregation (LLo-Aβ and HLo-Aβ) via dual polarization interferometry (DPI). Real-time molecular interaction process and kinetic analysis showed that m-Aβ had the strongest affinity and specificity with GSN compared with LLo-Aβ and HLo-Aβ.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!