Objective: Obesity induced by high-fat diet (HFD) elicits white adipose tissue dysfunction. In this study, we have hypothesized that the metabolic modulator eicosapentaenoic acid (EPA) combined with the antioxidant hydroxytyrosol (HT) attenuates HFD-induced white adipose tissue (WAT) alterations.
Methods: C57BL/6J mice were administered with a HFD (60% fat, 20% protein, 20% carbohydrates) or control diet (CD; 10% fat, 20% protein, 70% carbohydrates), with or without EPA (50 mg/kg/day), HT (5 mg/kg/day), or both for 12 weeks. Determinations in WAT include morphological parameters, EPA and docosahexaenoic acid content in phospholipids (gas chromatography), lipogenesis, oxidative stress (OS) and inflammation markers, and gene expression and activities of transcription factors, such as sterol regulatory element-binding protein-1c (SREBP-1c), peroxisome proliferator-activated receptor-gamma (PPAR-γ), nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) (p65 subunit) and nuclear factor erythroid 2-related factor 2 (Nrf2) (quantitative polymerase chain reaction and enzyme linked immunosorbent assay).
Results: HFD led to WAT hypertrophy in relation to PPAR-γ downregulation. WAT metabolic dysfunction was characterized by upregulation of lipogenic SREBP-1c system, mitochondrial energy metabolism depression, loss of the antioxidant Nrf2 signaling with OS enhancement, n-3 long-chain polyunsaturated fatty acids depletion and activation of the pro-inflammatory NF-κB system. EPA and HT co-supplementation diminished HFD-dependent effects additively, reaching values close or similar to controls.
Conclusion: Data presented strengthen the importance of combined protocols such as EPA plus HT to attenuate metabolic-inflammatory states triggered by obesity.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7582637 | PMC |
http://dx.doi.org/10.3390/molecules25194433 | DOI Listing |
Biosci Biotechnol Biochem
January 2025
Department of Food and Biotechnology, Korea University, Sejong 30019, Republic of Korea.
Obesity, often driven by high-fat diets (HFD), is a major global health issue, necessitating effective preventive measures. Tetragonia tetragonoides, a plant with known medicinal properties, has not been extensively studied for its effects on HFD-induced obesity and related genetic changes in mice. This study explores the impact of Tetragonia tetragonoides extract (TTE; 300 mg/kg) on obesity-related traits in C57BL/6J male mice, with a focus on transcriptomic changes in the liver and white adipose tissue (WAT).
View Article and Find Full Text PDFJ Biol Chem
January 2025
Department of Science in Korean Medicine, Graduate School, Kyung Hee University, 02447, Seoul, Korea; Department of Pharmacology, College of Korean Medicine, Kyung Hee University, 02447, Seoul, Korea; Kyung Hee Institute of Convergence Korean Medicine, Kyung Hee University, 02447, Seoul, Korea. Electronic address:
FXR, encoded by Nh1r4, is a nuclear receptor crucial in regulating bile acid, lipid, and glucose metabolism. Prior research has indicated that activating FXR in the liver and small intestine may offer protection against obesity and metabolic diseases. This study demonstrates the essential role of the FXR-ApoC2 pathway in promoting the browning of white adipose tissue (WAT).
View Article and Find Full Text PDFEnviron Res
January 2025
Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA; Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, Massachusetts General Hospital, Boston, MA.
Background: Per- and polyfluoroalkyl substances (PFAS) may impact ovarian folliculogenesis and steroidogenesis, but whether prenatal exposure may impact offspring reproductive health is unknown. This study examines the extent to which maternal PFAS plasma concentrations during pregnancy are associated with polycystic ovary syndrome (PCOS) and related characteristics in female offspring.
Methods: We studied 322 mother-daughter pairs in Project Viva, a Boston-area longitudinal pre-birth cohort enrolled 1999-2002.
STAR Protoc
January 2025
Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA. Electronic address:
Here, we present a protocol for assessing the impact of a chemogenetic manipulation in a subpopulation of the hypothalamic neurons on aging and lifespan control using a mouse model developed specifically for this purpose. We describe steps for stereotaxic viral injection and assess inter-tissue communication between protein phosphatase 1 regulatory subunit 17 (Ppp1r17)-expressing neurons in the dorsomedial hypothalamus and white adipose tissue. We then detail procedures for lifespan measurements following chemogenetic manipulation in aged mice.
View Article and Find Full Text PDFFASEB J
January 2025
Department of Radiology, C.J. Gorter MRI Center, Leiden University Medical Center, Leiden, The Netherlands.
Brown adipose tissue (BAT) is a metabolically highly active tissue that dissipates energy stored within its intracellular triglyceride droplets as heat. Others have previously utilized MRI to show that the fat fraction of human supraclavicular BAT (scBAT) decreases upon cold exposure, compared with baseline (i.e.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!