Studies on fragment-based design of allosteric inhibitors of human factor XIa.

Bioorg Med Chem

Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, VA 23298, United States; Institute for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University, Richmond, VA 23219, United States. Electronic address:

Published: December 2020

Human factor XIa (hFXIa) has emerged as an attractive target for development of new anticoagulants that promise higher level of safety. Different strategies have been adopted so far for the design of anti-hFXIa molecules including competitive and non-competitive inhibition. Of these, allosteric dysfunction of hFXIa's active site is especially promising because of the possibility of controlled reduction in activity that may offer a route to safer anticoagulants. In this work, we assess fragment-based design approach to realize a group of novel allosteric hFXIa inhibitors. Starting with our earlier discovery that sulfated quinazolinone (QAO) bind in the heparin-binding site of hFXIa, we developed a group of two dozen dimeric sulfated QAOs with intervening linkers that displayed a progressive variation in inhibition potency. In direct opposition to the traditional wisdom, increasing linker flexibility led to higher potency, which could be explained by computational studies. Sulfated QAO 19S was identified as the most potent and selective inhibitor of hFXIa. Enzyme inhibition studies revealed that 19S utilizes a non-competitive mechanism of action, which was supported by fluorescence studies showing a classic sigmoidal binding profile. Studies with selected mutants of hFXIa indicated that sulfated QAOs bind in heparin-binding site of the catalytic domain of hFXIa. Overall, the approach of fragment-based design offers considerable promise for designing heparin-binding site-directed allosteric inhibitors of hFXIa.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8109618PMC
http://dx.doi.org/10.1016/j.bmc.2020.115762DOI Listing

Publication Analysis

Top Keywords

fragment-based design
12
allosteric inhibitors
8
human factor
8
factor xia
8
bind heparin-binding
8
heparin-binding site
8
sulfated qaos
8
hfxia
7
studies
5
studies fragment-based
4

Similar Publications

Fragment-to-Lead Medicinal Chemistry Publications in 2023.

J Med Chem

January 2025

Astex Pharmaceuticals, 436 Cambridge Science Park, Milton Road, Cambridge CB4 0QA, United Kingdom.

This Perspective summarizes successful fragment-to-lead (F2L) studies that were published in 2023 and is the ninth installment in an annual series. A tabulated summary of the relevant articles published in 2023 is provided (17 entries from 16 articles), and a comparison of the target classes, screening methods, and overall fragment or lead property trends for 2023 examples and for the combined entries over the years 2015-2023 is discussed. In addition, we identify several trends and innovations in the 2023 literature that promise to further increase the success of fragment-based drug discovery (FBDD), particularly in the areas of NMR and virtual screening, fragment library design, and fragment linking.

View Article and Find Full Text PDF

Mood disorders affect the daily lives of millions of people worldwide. The search for more efficient therapies for mood disorders remains an active field of research. In silico approaches can accelerate the search for inhibitors against protein targets related to mood disorders.

View Article and Find Full Text PDF

X-Ray Crystallography of Viruses.

Subcell Biochem

December 2024

ALBA Synchrotron Light Source, Cerdanyola del Vallès, Spain.

Since the 1970s and for about 40 years, X-ray crystallography has been by far the most powerful approach for determining virus structures at close to atomic resolutions. Information provided by these studies has deeply and extensively enriched and shaped our vision of the virus world. In turn, the ever-increasing complexity and size of the virus structures being investigated have constituted a major driving force for methodological and conceptual developments in X-ray macromolecular crystallography (MX).

View Article and Find Full Text PDF

Probing the Protein Kinases' Cysteinome by Covalent Fragments.

Angew Chem Int Ed Engl

December 2024

Goethe-Universitat Frankfurt am Main Fachbereich 14 Biochemie Chemie und Pharmazie, Institute for Pharmaceutical Chemistry, GERMANY.

Protein kinases are important drug targets, yet specific inhibitors have been developed for only a fraction of the more than 500 human kinases. A major challenge in designing inhibitors for highly related kinases is selectivity. Unlike their non-covalent counterparts, covalent inhibitors offer the advantage of selectively targeting structurally similar kinases by modifying specific protein side chains, particularly non-conserved cysteines.

View Article and Find Full Text PDF

The first FDA approved, MDR-TB inhibitory drug bedaquiline (BDQ), entraps the c-ring of the proton-translocating F region of enzyme ATP synthase of , thus obstructing successive ATP production. Present-day BDQ-resistance has been associated with cardiotoxicity and mutation(s) in the atpE gene encoding the c subunit of ATP synthase (ATPc) generating five distinct ATPc mutants: Ala63→Pro, Ile66→Met, Asp28→Gly, Asp28→Val and Glu61→Asp. We created three discrete libraries, first by repurposing bedaquiline via scaffold hopping approach, second one having natural plant compounds and the third being experimentally derived analogues of BDQ to identify one drug candidate that can inhibit ATPc activity more efficiently with less toxic properties.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!