Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Urease enzyme is a virulence factor that helps in colonization and maintenance of highly pathogenic bacteria in human. Hence, the inhibition of urease enzymes is well-established to be a promising approach for preventing deleterious effects of ureolytic bacterial infections. In this work, novel thiobarbiturate derivatives were synthesized and evaluated for their urease inhibitory activity. All tested compounds effectively inhibited the activity of urease enzyme. Compounds 1, 2a, 2b, 4 and 9 displayed remarkable anti-urease activity (IC = 8.21-16.95 μM) superior to that of thiourea reference standard (IC = 20.04 μM). Moreover, compounds 3a, 3g, 5 and 8 were equipotent to thiourea. Among the tested compounds, morpholine derivative 4 (IC = 8.21 µM) was the most potent one, showing 2.5 folds the activity of thiourea. In addition, the antibacterial activity of the synthesized compounds was estimated against both standard strains and clinical isolates of urease producing bacteria. Compound 4 explored the highest potency exceeding that of cephalexin reference drug. Moreover, biodistribution study using radiolabeling approach revealed a remarked uptake of Tc-compound 4 into infection induced in mice. Furthermore, a molecular docking analysis revealed proper orientation of title compounds into the urease active site rationalizing their potent anti-urease activity.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bmc.2020.115759 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!