A highly selective, sensitive, and simple analytical method for identification and quantification of nine haloacetic acids, bromate, and dalapon has been developed. This method uses ion chromatography (IC) coupled with electrospray ionization-high-resolution mass spectrometry (IC-ESI-HRMS) to directly analyze water samples on a high capacity anion-exchange column, eliminating the need for sample pretreatment/derivatization. Our study compared the following three types of targeted quantitation experiments using a quadrupole-orbitrap hybrid mass spectrometer, full-scan MS with data-dependent tandem mass spectrometry (full MS/dd-MS with inclusion list), targeted selected ion monitoring (SIM) with data-dependent tandem mass spectrometry (t-SIM/dd-MS), and parallel reaction monitoring (PRM). Sensitivity, linearity, accuracy, and precision were validated following the guidelines of U.S. EPA Method 557. Single laboratory lowest concentration minimum reporting levels (LCMRLs) for the analytes using three different acquisition modes ranged from 0.0011 to 0.18 μg/L. All three quantitation modes showed good linearity for the eleven analytes with coefficients of determination of 0.9981- 0.9993. This IC-ESI-HRMS method was successfully applied to the analysis of commercial bottled water, tap water from San Francisco Bay Area, and the same tap water that has been through a filtered drinking water faucet. Both t-SIM/dd-MS and PRM modes were sensitive to confirm the trace-level presence of all nine HAAs, bromate, and dalapon in the tap water sample. Full-scan HRMS data acquisition provided the benefits of simultaneous data collection for both targeted and non-targeted components, and thus, suitability for simultaneous quantification of an unlimited number of compounds. Data-dependent MS/MS (dd-MS) product-ion spectra were used for confirmation. All three modes showed good quantitative performance and obtained similar values. Single laboratory precision and accuracy data are presented for three water matrices: reagent water, laboratory synthetic sample matrix (LSSM), and tap water. Single laboratory precision was 0.078- 8.04%, and accuracy was in the range 70-130% for the three MS modes.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chroma.2020.461538DOI Listing

Publication Analysis

Top Keywords

mass spectrometry
16
tap water
16
bromate dalapon
12
water
10
targeted quantitation
8
haloacetic acids
8
acids bromate
8
drinking water
8
ion chromatography
8
chromatography coupled
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!