Viral nanotechnology exploits the prefabricated nanostructures of viruses, which are already abundant in nature. With well-defined molecular architectures, viral nanocarriers offer unprecedented opportunities for precise structural and functional manipulation using genetic engineering and/or bio-orthogonal chemistries. In this manner, they can be loaded with diverse molecular payloads for targeted delivery. Mammalian viruses are already established in the clinic for gene therapy and immunotherapy, and inactivated viruses or virus-like particles have long been used as vaccines. More recently, plant viruses and bacteriophages have been developed as nanocarriers for diagnostic imaging, vaccine and drug delivery, and combined diagnosis/therapy (theranostics). The first wave of these novel virus-based tools has completed clinical development and is poised to make an impact on clinical practice.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8018517PMC
http://dx.doi.org/10.1146/annurev-virology-010720-052252DOI Listing

Publication Analysis

Top Keywords

plant viruses
8
viruses bacteriophage-based
4
bacteriophage-based reagents
4
reagents diagnosis
4
diagnosis therapy
4
therapy viral
4
viral nanotechnology
4
nanotechnology exploits
4
exploits prefabricated
4
prefabricated nanostructures
4

Similar Publications

Sweetpotato ( Lam.) is grown worldwide and is a staple food in many countries. One of the main constraints for sweetpotato production is cultivar decline, caused by the accumulation of viruses and subsequent losses of storage root yield and quality over years of vegetative propagation.

View Article and Find Full Text PDF

Advancements in high-throughput sequencing and associated bioinformatics methods have significantly expanded the RNA virus repertoire, including novel viruses with highly divergent genomes encoding "orphan" proteins that apparently lack homologous sequences. This absence of homologs in routine sequence similarity search complicates their taxonomic classification and raises a fundamental question: Do these orphan viral genomes represent viruses? In 2022, an orphan viral genome encoding a large polyprotein was identified in alfalfa () and thrips (), and named Snake River alfalfa virus (SRAV). SRAV was initially proposed as an uncommon flavi-like virus identified in a plant host distantly related to family .

View Article and Find Full Text PDF

Phages Affect Soil Dissolved Organic Matter Mineralization by Shaping Bacterial Communities.

Environ Sci Technol

January 2025

State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo 315211, China.

Viruses are considered to regulate bacterial communities and terrestrial nutrient cycling, yet their effects on bacterial metabolism and the mechanisms of carbon (C) dynamics during dissolved organic matter (DOM) mineralization remain unknown. Here, we added active and inactive bacteriophages (phages) to soil DOM with original bacterial communities and incubated them at 18 or 23 °C for 35 days. Phages initially (1-4 days) reduced CO efflux rate by 13-21% at 18 °C and 3-30% at 23 °C but significantly ( < 0.

View Article and Find Full Text PDF

This review serves as a critical framework for guiding future research into the causes of russeting and the development of effective control strategies to enhance fruit quality. Russeting is a condition characterized by the formation of brown, corky patches on fruit skin which significantly impairs both the quality and market value of apples. This phenomenon arises from a complex interplay of various biotic and abiotic factors.

View Article and Find Full Text PDF

Bats are natural hosts for many emerging viruses for which spillover to humans is a major risk, but the diversity and ecology of bat viruses is poorly understood. Here we generated 8,176 RNA viral metagenomes by metatranscriptomic sequencing of organ and swab samples from 4,143 bats representing 40 species across 52 locations in China. The resulting database, the BtCN-Virome, expands bat RNA virus diversity by over 3.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!