Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Choosing and optimizing treatment strategies for cancer requires capturing its complex dynamics sufficiently well for understanding but without being overwhelmed. Mathematical models are essential to achieve this understanding, and we discuss the challenge of choosing the right level of complexity to address the full range of tumor complexity from growth, the generation of tumor heterogeneity, and interactions within tumors and with treatments and the tumor microenvironment. We discuss the differences between conceptual and descriptive models, and compare the use of predator-prey models, evolutionary game theory, and dynamic precision medicine approaches in the face of uncertainty about mechanisms and parameter values. Although there is of course no one-size-fits-all approach, we conclude that broad and flexible thinking about cancer, based on combined modeling approaches, will play a key role in finding creative and improved treatments.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7791451 | PMC |
http://dx.doi.org/10.1177/1073274820962008 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!