Self-Assembled Bioinspired Nanocomposites.

Acc Chem Res

A3BMS Lab-Active, Adaptive and Autonomous Bioinspired Materials, Institute for Macromolecular Chemistry, University of Freiburg, Stefan-Meier-Straße 31, 79104 Freiburg, Germany.

Published: November 2020

Bioinspired materials engineering impacts the design of advanced functional materials across many domains of sciences from wetting behavior to optical and mechanical materials. In all cases, the advances in understanding how biology uses hierarchical design to create failure and defect-tolerant materials with emergent properties lays the groundwork for engaging into these topics. Biological mechanical materials are particularly inspiring for their unique combinations of stiffness, strength, and toughness together with lightweightness, as assembled and grown in water from a limited set of building blocks at room temperature. Wood, nacre, crustacean cuticles, and spider silk serve as some examples, where the correct arrangement of constituents and balanced molecular energy dissipation mechanisms allows overcoming the shortcomings of the individual components and leads to synergistic materials performance beyond additive behavior. They constitute a paradigm for future structural materials engineering-in the formation process, the use of sustainable building blocks and energy-efficient pathways, as well as in the property profiles-that will in the long term allow for new classes of high-performance and lightweight structural materials needed to promote energy efficiency in mobile technologies.This Account summarizes our efforts of the past decade with respect to designing self-assembling bioinspired materials aiming for both mechanical high-performance structures and new types of multifunctional property profiles. The Account is set out to first give a definition of bioinspired nanocomposite materials and self-assembly therein, followed by an in-depth discussion on the understanding of mechanical performance and rational design to increase the mechanical performance. We place a particular emphasis on materials formed at high fractions of reinforcements and with tailor-made functional polymers using self-assembly to create highly ordered structures and elucidate in detail how the soft polymer phase needs to be designed in terms of thermomechanical properties and sacrificial supramolecular bonds. We focus on nanoscale reinforcements such as nanoclay and nanocellulose that lead to high contents of internal interfaces and intercalated polymer layers that experience nanoconfinement. Both aspects add fundamental challenges for macromolecular design of soft phases using precision polymer synthesis. We build upon those design criteria and further develop the concepts of adaptive bioinspired nanocomposites, whose properties are switchable from the outside using molecularly defined triggers with light. In a last section, we discuss how new types of functional properties, in particular flexible and transparent gas barrier materials or fire barrier materials, can be reached on the basis of the bioinspired nanocomposite design strategies. Additionally, we show new types of self-assembled photonic materials that can even be evolved into self-assembling lasers, hence moving the concept of mechanical nanocomposite design to other functionalities.The comparative discussion of different bioinspired nanocomposite architectures with nematic, fibrillar, and cholesteric structures, as based on different reinforcing nanoparticles, aims for a unified understanding of the design principles and shall aid researchers in the field in the more elaborate design of future bioinspired nanocomposite materials based on molecular control principles. We conclude by addressing challenges, in particular also the need for a transfer from fundamental molecular materials science into scalable engineering materials of technological and societal relevance.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.accounts.0c00448DOI Listing

Publication Analysis

Top Keywords

materials
17
bioinspired nanocomposite
16
design
9
bioinspired nanocomposites
8
bioinspired materials
8
mechanical materials
8
building blocks
8
structural materials
8
nanocomposite materials
8
mechanical performance
8

Similar Publications

The incidence of chronic enteropathies (CE), in particular food-responsive enteropathies (FRE) in dogs, is on the rise in veterinary practice. The symptoms of these digestive disorders cannot be alleviated with the use of commercial hypoallergenic feeds. The applicability of novel materials in hypoallergenic dog feeds is limited, and edible insects could pose a viable alternative.

View Article and Find Full Text PDF

Prevalence of Hepatozoon canis infection in dogs from the area of Lublin Voivodship.

Pol J Vet Sci

June 2024

Department of Epizootiology and Clinic of Infectious Diseases, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, 30 Głęboka Street, 20-612 Lublin, Poland.

Canine hepatozoonosis is a tick-borne protozoal disease. Two species of Hepatozoon may infect dogs: Hepatozoon americanum and H. canis.

View Article and Find Full Text PDF

Proper management of cattle reproduction has a major impact on the efficiency and profitability of dairy production. Ultrasound examination and transrectal palpation or the pregnancy-associated glycoprotein (PAG) test are currently the most commonly used methods for pregnancy diagnosis. However, alternative methods to those mentioned above are constantly being sought in order to minimise stress during the examination, the cost of veterinary services and to reduce the rate of errors in pregnancy diagnosis.

View Article and Find Full Text PDF

Single-walled carbon nanotubes (SWCNTs) are fluorescent materials that have been developed as sensors for measuring the activities of enzymes. However, most sensors to date rely on end-point measurement and empirical functions to correlate enzyme concentrations with fluorescence responses. Less emphasis is put on analyzing time-dependent fluorescence responses and their connections with enzymatic kinetics.

View Article and Find Full Text PDF

Biomass-Based Microbial Protein Production: A Review of Processing and Properties.

Front Biosci (Elite Ed)

December 2024

Environmental Sciences, Faculty of Environmental and Conservation Sciences, North Dakota State University, Fargo, ND 58102, USA.

A rise in population and societal changes have increased pressure on resources required to meet the growing demand for food and changing dietary preferences. The increasing demand for animal protein is concerning and raises questions regarding sustainability due to its environmental impact. Subsequently, scientists seek alternative proteins, such as microbial proteins (MPs), as an environmentally friendly choice.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!