Retained items (eg, sponges, sharps) after surgical procedures are reportable errors that can result in patient harm or death and increased patient and health care system costs. Perioperative use of radiofrequency (RF) technology may decrease the number of retained sponges and reduce hospital costs. We sought to determine whether the use of RF technology may be associated with fewer retained sponges, improved patient outcomes, and decreased hospital costs. We completed a retrospective evaluation of incident reports before and after implementing the use of an RF system for retained surgical sponges. We found that using RF technology was associated with fewer retained sponges and improved outcomes at our facility. We also determined that mortality rates before and after RF technology implementation were similar, and we estimated that our hospital's costs were reduced.

Download full-text PDF

Source
http://dx.doi.org/10.1002/aorn.13171DOI Listing

Publication Analysis

Top Keywords

retained sponges
16
radiofrequency technology
8
patient outcomes
8
hospital costs
8
technology associated
8
associated fewer
8
fewer retained
8
sponges improved
8
retained
6
sponges
6

Similar Publications

Macrocycles are unique as they encapsulate and transfer guest molecules or ions and facilitate catalytic processes. Although metalated macrocycles are pivotal in electrocatalytic processes, using metal-free analogs has been rare. Following the strategy of Kanbara et al.

View Article and Find Full Text PDF

Purpose: To analyze the feasibility and effectiveness of bacterial culture in negative pressure wound drainage (NPWD) fluid in patients with Pyogenic Vertebral Osteomyelitis (PVO).

Methods: A retrospective analysis was performed on 17 patients with PVO who were treated with negative pressure drainage at the Department of Orthopedics in our hospital from January 1, 2018 to December 31, 2021. Data was obtained while the patients were in the hospital, including 12 males and 5 females with an average age of 57.

View Article and Find Full Text PDF

Reconstructed three-dimensional structure of gas-foamed polycaprolactone/cellulose nanofibrous scaffold for biomedical applications.

Int J Biol Macromol

December 2024

Department of Bionanotechnology and Bioconvergence Engineering, Graduate School, Jeonbuk National University, Jeonju 54896, Republic of Korea; Department of Bionanosystem Engineering, Graduate School, Jeonbuk National University, Jeonju 54896, Republic of Korea; Division of Mechanical Design Engineering, Jeonbuk National University, Jeonju 54896, Republic of Korea; Eco-Friendly Machine Parts Design Research Center, Jeonbuk National University, Jeonju, Republic of Korea; School of Semiconductor and Chemical Engineering, Jeonbuk National University, Jeonju, Republic of Korea. Electronic address:

One of the unavoidable issues with the bio-scaffolding process is the collapse of the visually appealing external three-dimensional (3D) sponge-like structure and the internal porous and multilayered morphology of a gas-foamed nanofibrous scaffold. Herein, a gas-foamed polycaprolactone/cellulose (g-PCL/CL) nanofibers scaffold is first prepared by electrospinning PCL/cellulose acetate, followed by deacetylation and then Sodium borohydride-assisted gas-foaming technique. The deformed 3D architecture of g-PCL/CL nanofiber is finally reconstructed by mixing it with chitosan (CS) solution and molding.

View Article and Find Full Text PDF

New photocatalytic materials based on complex oxides and a widely used and cheap polymer (PMMA) have been prepared. Among complex oxides previously investigated, the following have been used-RbTeWO, CsTeMoO, CsVTeO, NaVMoO, KVMoO. For comparison, the binary oxides TiO and WO were used.

View Article and Find Full Text PDF
Article Synopsis
  • Superhydrophobic surfaces with hierarchical micro/nanostructures, like the developed O-Ph-POSS on fluorinated graphene, achieve high water contact angles (152°) and low surface energy (5.6 mJ/m²), making them highly robust and effective in water-repelling applications.
  • The O-Ph-POSS-FG hybrid demonstrated remarkable oil absorption (200-500 wt%) and was successfully used to coat polyurethane sponges, achieving oil-water separation efficiencies of 90%-99%, even after multiple cycles.
  • Durability tests showed that the sponges maintained superhydrophobic properties over time, retaining effective water contact angles and separation efficiency after one year and multiple mechanical stress tests.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!