Decitabine bioproduction using a biocatalyst with improved stability by adding nanocomposites.

AMB Express

Laboratory of Sustainable Biotechnology (LIBioS), National University of Quilmes, Roque Sáenz Peña 352, B1876BXD, Bernal, Argentina.

Published: September 2020

A novel IDA-LaNDT derivative was able to reach the highest productivity in the biosynthesis of a well-known antitumoral agent called decitabine. However, the combination of two simple and inexpensive techniques such as ionic absorption and gel entrapment with the incorporation of a bionanocomposite such as bentonite significantly improved the stability of this biocatalyst. These modifications allowed the enhancement of storage stability (for at least 18 months), reusability (400 h of successive batches without significant loss of its initial activity), and thermal and solvent stability with respect to the non-entrapped derivative. Moreover, reaction conditions were optimized by increasing the solubility of 5-aza by dilution with dimethylsulfoxide. Therefore, a scale-up of the bioprocess was assayed using the developed biocatalyst, obtaining 221 mg/L·h of DAC. Finally, green parameters were calculated using the nanostabilized biocatalyst, whose results indicated that it was able to biosynthesize DAC by a smooth, cheap, and environmentally friendly methodology.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7524979PMC
http://dx.doi.org/10.1186/s13568-020-01109-0DOI Listing

Publication Analysis

Top Keywords

improved stability
8
decitabine bioproduction
4
biocatalyst
4
bioproduction biocatalyst
4
biocatalyst improved
4
stability
4
stability adding
4
adding nanocomposites
4
nanocomposites novel
4
novel ida-landt
4

Similar Publications

Endohedral boron-doped scandium clusters BSc ( = 2-3, = 3-13): triangular - linear rearrangement of the B dopant.

Dalton Trans

January 2025

Laboratory for Chemical Computation and Modeling, Institute for Computational Science and Artificial Intelligence, Van Lang University, Ho Chi Minh City, Vietnam.

A theoretical investigation, employing density functional theory with the PBE functional and the Def2-TZVP basis set, comprehensively explores the geometric and electronic structures and properties of the boron doped scandium clusters BSc with = 2-3 and = 3-13. Introduction of B atoms significantly enhances the stability of the resulting clusters with respect to the initial counterparts. As the number of B atoms increases, the stability of the doped clusters improves, following the order: BSc > BSc > BSc > Sc.

View Article and Find Full Text PDF

Humans and predators occupy dominant positions in ecosystems and are generally believed to play a decisive role in maintaining ecosystem stability, particularly in the context of virus transmission. However, this may not always be the case. By establishing some ecosystem virus transmission models that cover both human perspectives and predators, we have drawn the following conclusions: (1) Controlling vaccination activities from the human perspective can potentially lower the transmission rate and improve herd immunity, thereby indirectly protecting unvaccinated risk groups.

View Article and Find Full Text PDF

Nowcasting to Monitor Real-Time Mpox Trends During the 2022 Outbreak in New York City: Evaluation Using Reportable Disease Data Stratified by Race or Ethnicity.

Online J Public Health Inform

January 2025

Bureau of Communicable Disease, New York City Department of Health and Mental Hygiene, Long Island City, NY, United States.

Background: Applying nowcasting methods to partially accrued reportable disease data can help policymakers interpret recent epidemic trends despite data lags and quickly identify and remediate health inequities. During the 2022 mpox outbreak in New York City, we applied Nowcasting by Bayesian Smoothing (NobBS) to estimate recent cases, citywide and stratified by race or ethnicity (Black or African American, Hispanic or Latino, and White). However, in real time, it was unclear if the estimates were accurate.

View Article and Find Full Text PDF

Synthesis of IrCu/CoO hybrid nanostructures and their enhanced catalytic properties toward oxygen evolution reaction under both acidic and alkaline conditions.

Dalton Trans

January 2025

Department of Chemical Engineering, Integrated Engineering Major, College of Engineering, Kyung Hee University, Yongin, 17104, Republic of Korea.

Oxygen evolution reaction (OER) is a half-reaction that occurs at the anode during water electrolysis, and owing to its slow kinetics, it is the rate-limiting step in the process. Alloying with transition metal and combining with transition metal oxide supports are effective methods for modifying the electronic structure of noble metal catalysts and improving their catalytic properties. In this study, we synthesized IrCu/CoO hybrid nanostructures by attaching IrCu alloy nanoparticles onto CoO nanosheets.

View Article and Find Full Text PDF

Development of a competent and stable electrocatalyst coupled with photovoltaic system for the generation of green hydrogen, can be a plausible answer to the existing energy crisis. Herein, we have developed Ru doped Ni0.95Se via hydrothermal method as a bifunctional catalyst for overall water splitting coupled with photovoltaic system.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!