The specific absorption rate (SAR) induced by wireless radiofrequency (RF) systems depends on different parameters. Previously, SAR was mainly assessed under conditions of a single frequency and technology and for a limited number of localized RF sources. The current and emerging mobile systems involve a wider range of usage scenarios and are frequently used simultaneously, leading to combined exposures for which almost no exposure evaluation exists. The aim and novelty of this study is to close this gap of knowledge by developing new methods to rapidly evaluate the SAR induced by RF systems in such scenarios at frequencies from 50 MHz to 5.5 GHz. To this aim, analytical methods for SAR estimation in several usage scenarios were derived through a large-scale numerical study. These include subject-specific characteristics, properties of the RF systems and provide an estimation of the SAR in the whole body, tissues and organs, and different brain regions.

Download full-text PDF

Source
http://dx.doi.org/10.1093/rpd/ncaa127DOI Listing

Publication Analysis

Top Keywords

specific absorption
8
absorption rate
8
sar induced
8
usage scenarios
8
sar
5
evaluation specific
4
rate far-field
4
far-field near-to-far
4
near-to-far field
4
field near-field
4

Similar Publications

Shifting surface plasmon resonance wavelength to the far-ultraviolet region with aluminum-based sensors.

Spectrochim Acta A Mol Biomol Spectrosc

January 2025

Department of Chemistry, College of Science, Rikkyo University, 3-34-1, Nishi-Ikebukuro, Toshima, Tokyo 171-8501, Japan. Electronic address:

A novel aluminum (Al)-based surface plasmon resonance (SPR) sensor operating in the far-ultraviolet (FUV, <200 nm) region has been developed. By utilizing a thinner Al film compared to previously reported deep-ultraviolet (DUV, <300 nm) SPR sensors, the SPR wavelength was effectively maintained within the FUV region across various liquids. In the presence of resonant molecules, the SPR wavelength shift was notably enhanced.

View Article and Find Full Text PDF

Background And Aims: It is assumed that trees should adapt their above and belowground organs as they age. However, most studies to date have quantified these trait adjustments in homogeneous forest stands, confounding the effect of stand aging on soil properties and the intrinsic response of trees to aging.

Methods: Here, we examined 11 morphological, architectural, anatomical and mycorrhizal fine root traits of each of the first five orders for 66 Pinus koraiensis individuals of 16 to 285 years old in northeast China, while accounting for soil characteristics (pH and total C, N and P concentrations).

View Article and Find Full Text PDF

Tinospora cordifolia extract exhibits diverse benefits-anti-arthritis, anti-malarial, anti-allergic, anti-diabetic, antihepatotoxic, and antipyretic effects. Its specific anti-inflammatory and healing capacities remain unexplored, prompting a study utilizing a mouse skin wound model and direct T. cordifolia extraction.

View Article and Find Full Text PDF

The anaerobic bacterium Clostridium cellulovorans is a promising candidate for the sustainable production of biofuels and platform chemicals due to its cellulolytic properties. However, the genomic engineering of the species is hampered because of its poor genetic accessibility and the lack of genetic tools. To overcome this limitation, a protocol for triparental conjugation was established that enables the reliable transfer of vectors for markerless chromosomal modification into C.

View Article and Find Full Text PDF

Silica nano/microparticles have generated significant interest for the past decades, emerging as a versatile material with a wide range of applications in photonic crystals, bioimaging, chemical sensors, and catalysis. This study focused on synthesizing silica nano/microparticles ranging from 20 nm to 1.2 μm using the Stöber and modified Stöber methods.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!