Accelerated Estimation of Long-Timescale Kinetics from Weighted Ensemble Simulation via Non-Markovian "Microbin" Analysis.

J Chem Theory Comput

Department of Biomedical Engineering, Oregon Health and Science University, Portland, Oregon 97239, United States.

Published: November 2020

The weighted ensemble (WE) simulation strategy provides unbiased sampling of nonequilibrium processes, such as molecular folding or binding, but the extraction of rate constants relies on characterizing steady-state behavior. Unfortunately, WE simulations of sufficiently complex systems will not relax to steady state on observed simulation times. Here, we show that a postsimulation clustering of molecular configurations into "microbins" using methods developed in the Markov State Model (MSM) community can yield unbiased kinetics from WE data before steady-state convergence of the WE simulation itself. Because WE trajectories are directional and not equilibrium distributed, the history-augmented MSM (haMSM) formulation can be used, which yields the mean first-passage time (MFPT) without bias for arbitrarily small lag times. Accurate kinetics can be obtained while bypassing the often prohibitive convergence requirements of the nonequilibrium weighted ensemble. We validate the method in a simple diffusive process on a two-dimensional (2D) random energy landscape and then analyze atomistic protein folding simulations using WE molecular dynamics. We report significant progress toward the unbiased estimation of protein folding times and pathways, though key challenges remain.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8045600PMC
http://dx.doi.org/10.1021/acs.jctc.0c00273DOI Listing

Publication Analysis

Top Keywords

weighted ensemble
12
ensemble simulation
8
protein folding
8
accelerated estimation
4
estimation long-timescale
4
long-timescale kinetics
4
kinetics weighted
4
simulation
4
simulation non-markovian
4
non-markovian "microbin"
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!