Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
X-linked creatine transporter deficiency (CTD) is one of the three types of cerebral creatine deficiency disorders. CTD arises from pathogenic variants in the X-linked gene SLC6A8. We report the first phosphorus ( P) MRS study of patients with CTD, where both phosphocreatine and total creatine concentrations were found to be markedly reduced. Despite the diminished role of creatine and phosphocreatine in oxidative phosphorylation in CTD, we found no elevation of lactate or lowered pH, indicating that the brain energy supply still largely relied on oxidative metabolism. Our results suggest that mitochondrial function is a potential therapeutic target for CTD.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7722185 | PMC |
http://dx.doi.org/10.1002/nbm.4419 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!