Long-term outcome of cutaneous melanoma patients treated with boron neutron capture therapy (BNCT).

J Radiat Res

Department of Particle Radiation Oncology, Integrated Radiation and Nuclear Science, Kyoto University, Kumatori, Osaka 590-0494, Japan.

Published: November 2020

Our aim was to assess the long-term clinical outcome of boron neutron capture therapy (BNCT) using 10B-para-boronophenylalanine (BPA) as the boron delivery agent for cutaneous melanoma. Eight patients (eight lesions) were treated between October 2003 and April 2014. Their ages ranged from 48 to 86 years at the time of treatment. All of the targets were primary lesions and they were located on the sole or face. No patient had evidence of regional lymph node involvement, distant metastases or an active secondary cancer. The clinical stage was cT1-2N0M0 and performance scores were <2. BNCT was carried out at the Kyoto University Research Reactor (KUR). The patients were irradiated with an epithermal neutron beam between the curative tumor dose and the tolerable skin dose. Eight patients were evaluated and six showed a complete response (CR), while two patients had a partial response (PR). Of the two patients with a PR, one has remained a PR with brown spots persisting for 7.5 years following BNCT. The tumor in the other patient recurred after 6 years at the site of persisting brown macula. The overall control rate (CR + PR without recurrence) for the cohort was 88% (7/8). There have never been any adverse events >Grade 2 for the long follow-up period. Our results suggest that BNCT may be a promising treatment modality in the management of early stage cutaneous melanoma when wide local excision is not feasible.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7674695PMC
http://dx.doi.org/10.1093/jrr/rraa068DOI Listing

Publication Analysis

Top Keywords

cutaneous melanoma
12
melanoma patients
8
boron neutron
8
neutron capture
8
capture therapy
8
therapy bnct
8
long-term outcome
4
outcome cutaneous
4
patients treated
4
treated boron
4

Similar Publications

Small extracellular vesicles (sEVs) are nanosized vesicles. Death receptor 5 (DR5) mediates extrinsic apoptosis. We engineer DR5 agonistic single-chain variable fragment (scFv) expression on the surface of sEVs derived from natural killer cells.

View Article and Find Full Text PDF

This study investigates the differential activation of the epithelial-mesenchymal transition (EMT) pathway in metastatic melanoma, focusing on BRAF- and NRAS-mutated samples from The Cancer Genome Atlas (TCGA). Gene Set Enrichment Analysis (GSEA) reveals that BRAF mutations are more significantly associated with increased EMT activation, relative to all other mutations in the dataset. In contrast, NRAS mutations were not significantly associated with gene expression of the EMT pathway, suggesting alternative mechanisms for metastasis.

View Article and Find Full Text PDF

Cancer cells present sialylated glycoconjugates that modulate the activity of various immune cells within the tumor microenvironment through trans interaction with immunosuppressive Siglec receptors. Identifying counter receptors for Siglecs can provide valuable targets for cancer immunotherapy, but it presents significant challenges. Here, the identification of DSG2 (Desmoglein 2) as a dominant counter receptor of Siglec-9 in melanoma cells is reported, using a workflow that combines the strength of proximity labeling and the advantage of CRISPR knockout screening.

View Article and Find Full Text PDF

Background: Neurologic symptoms seen in patients receiving immune checkpoint inhibitors (ICI) may not be entirely caused by immunotoxicity. We aim to highlight these confounding conditions through clinical cases to encourage early recognition and management.

Methods: We describe a series of seven cases from our institution that were treated with ICI and presented with Neurologic symptoms and were diagnosed with superimposed conditions beyond immunotoxicity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!