AI Article Synopsis

  • This study examined the influence of rapid genetic testing (RGT) for BRCA1 and BRCA2 mutations on surgical choices among women diagnosed with breast cancer.
  • Conducted in Toronto, Canada, the research involved 1007 women, finding that those with a BRCA mutation were more likely to choose bilateral mastectomy.
  • Results showed that a significant majority (95.7%) of BRCA-positive participants used their genetic results to inform their surgical decisions, indicating the importance of RGT in treatment planning.

Article Abstract

Background: This study aimed to evaluate the impact of rapid genetic testing (RGT) for BRCA1 and BRCA2 at the time of breast cancer diagnosis on treatment choices. Bilateral mastectomy for the treatment of breast cancer in women with a BRCA1 or BRCA2 mutation offers a reduction in the risk of contralateral breast cancer. It is unclear whether offering RGT at the time of breast cancer diagnosis has an impact on women's surgical decision-making.

Methods: Women with breast cancer diagnosed between June 2013 and May 2018 were recruited from four academic health sciences centers in Toronto, Canada. The participants completed a questionnaire before genetic testing, then one week and one year after disclosure of the genetic test result. Before surgery, RGT was performed. Diagnostic, pathologic, and treatment data were compared between those with and those without a BRCA mutation.

Results: The study enrolled 1007 women who consented to RGT. The mean age of the participants was 46.3 years, and the median time to result disclosure was 10 days. A BRCA mutation was found in 6% of the women. The women with a BRCA mutation were significantly more likely to elect for bilateral mastectomy than the women without a BRCA mutation (p < 0.0001). Of the BRCA-positive patients, 95.7% reported that they used their genetic test result to make a surgical decision.

Conclusions: The women provided with RGT at the time of breast cancer diagnosis use the genetic information to make treatment decisions, and the majority of those identified with a BRCA mutation elect for a bilateral mastectomy.

Download full-text PDF

Source
http://dx.doi.org/10.1245/s10434-020-09160-8DOI Listing

Publication Analysis

Top Keywords

breast cancer
24
genetic testing
12
brca1 brca2
12
time breast
12
cancer diagnosis
12
brca mutation
12
rapid genetic
8
bilateral mastectomy
8
women brca
8
breast
6

Similar Publications

GradeDiff-IM: An Ensembles Model-based Grade Classification of Breast Cancer.

Biomed Phys Eng Express

January 2025

School of Engineering and Computing, University of the West of Scotland, University of the West of Scotland - Paisley Campus, Paisley PA1 2BE, UK, City, Paisley, PA1 2BE, UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND.

Cancer grade classification is a challenging task identified from the cell structure of healthy and abnormal tissues. The partitioner learns about the malignant cell through the grading and plans the treatment strategy accordingly. A major portion of researchers used DL models for grade classification.

View Article and Find Full Text PDF

Background: Bangladesh and West Bengal, India, are 2 densely populated South Asian neighboring regions with many socioeconomic and cultural similarities. In dealing with breast cancer (BC)-related issues, statistics show that people from these regions are having similar problems and fates. According to the Global Cancer Statistics 2020 and 2012 reports, for BC (particularly female BC), the age-standardized incidence rate is approximately 22 to 25 per 100,000 people, and the age-standardized mortality rate is approximately 11 to 13 per 100,000 for these areas.

View Article and Find Full Text PDF

Purpose: Breast cancer ranks as the most prevalent cancer in women, characterized by heightened fatty acid synthesis and glycolytic activity. Fatty acid synthase (FASN) is prominently expressed in breast cancer cells, regulating fatty acid synthesis, thereby enhancing tumor growth and migration, and leading to radioresistance. This study aims to investigate how FASN inhibition affects cell proliferation, migration, and radioresistance in breast cancer, as well as the mechanisms involved.

View Article and Find Full Text PDF

Triple negative breast cancers often contain higher numbers of tumour-infiltrating lymphocytes compared with other breast cancer subtypes, with their number correlating with prolonged survival. Since little is known about tumour-infiltrating lymphocyte trafficking in triple negative breast cancers, we investigated the relationship between tumour-infiltrating lymphocytes and the vascular compartment to better understand the immune tumour microenvironment in this aggressive cancer type. We aimed to identify mechanisms and signaling pathways responsible for immune cell trafficking in triple negative breast cancers, specifically of basal type, that could potentially be manipulated to change such tumours from immune "cold" to "hot" thereby increasing the likelihood of successful immunotherapy in this challenging patient population.

View Article and Find Full Text PDF

This study presents a novel approach to modeling breast cancer dynamics, one of the most significant health threats to women worldwide. Utilizing a piecewise mathematical framework, we incorporate both deterministic and stochastic elements of cancer progression. The model is divided into three distinct phases: (1) initial growth, characterized by a constant-order Caputo proportional operator (CPC), (2) intermediate growth, modeled by a variable-order CPC, and (3) advanced stages, capturing stochastic fluctuations in cancer cell populations using a stochastic operator.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!