Distant metastasis prediction via a multi-feature fusion model in breast cancer.

Aging (Albany NY)

Department of Bone and Soft Tissue Tumors, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin 300060, China.

Published: September 2020

This study aimed to develop a model that fused multiple features (multi-feature fusion model) for predicting metachronous distant metastasis (DM) in breast cancer (BC) based on clinicopathological characteristics and magnetic resonance imaging (MRI). A nomogram based on clinicopathological features (clinicopathological-feature model) and a nomogram based on the multi-feature fusion model were constructed based on BC patients with DM (n=67) and matched patients (n=134) without DM. DM was diagnosed on average (17.31±13.12) months after diagnosis. The clinicopathological-feature model included seven features: reproductive history, lymph node metastasis, estrogen receptor status, progesterone receptor status, CA153, CEA, and endocrine therapy. The multi-feature fusion model included the same features and an additional three MRI features (multiple masses, fat-saturated T2WI signal, and mass size). The multi-feature fusion model was relatively better at predicting DM. The sensitivity, specificity, diagnostic accuracy and AUC of the multi-feature fusion model were 0.746 (95% CI: 0.623-0.841), 0.806 (0.727-0.867), 0.786 (0.723-0.841), and 0.854 (0.798-0.911), respectively. Both internal and external validations suggested good generalizability of the multi-feature fusion model to the clinic. The incorporation of MRI factors significantly improved the specificity and sensitivity of the nomogram. The constructed multi-feature fusion nomogram may guide DM screening and the implementation of prophylactic treatment for BC.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7585122PMC
http://dx.doi.org/10.18632/aging.103630DOI Listing

Publication Analysis

Top Keywords

multi-feature fusion
32
fusion model
28
model
10
distant metastasis
8
multi-feature
8
fusion
8
breast cancer
8
based clinicopathological
8
nomogram based
8
clinicopathological-feature model
8

Similar Publications

Accurate protein secondary structure prediction (PSSP) plays a crucial role in biopharmaceutics and disease diagnosis. Current prediction methods are mainly based on multiple sequence alignment (MSA) encoding and collaborative operations of diverse networks. However, existing encoding approaches lead to poor feature space utilization, and encoding quality decreases with fewer homologous proteins.

View Article and Find Full Text PDF

With the continuous development of intelligent transportation systems, traffic safety has become a major societal concern, and vehicle trajectory anomaly detection technology has emerged as a crucial method to ensure safety. However, current technologies face significant challenges in handling spatiotemporal data and multi-feature fusion, including difficulties in big data processing, and have room for improvement in these areas. To address these issues, this paper proposes a novel method that combines autoencoders, Mahalanobis distance, and dynamic Bayesian networks for anomaly detection.

View Article and Find Full Text PDF
Article Synopsis
  • E-commerce struggles with issues like content sameness and user anxiety about making purchases, prompting a study on perceived risk based on online reviews.
  • The study used a dataset of over 262,000 reviews and a predictive model that effectively identified 11 key factors impacting perceived risk, achieving high accuracy metrics (precision of 84%, recall of 86%, F1 score of 85%).
  • Key features influencing perceived risk vary by product type; for electronics, quality, functionality, and price are crucial, while for skincare, skin safety is the top concern, highlighting differences in risk perception.
View Article and Find Full Text PDF

Introduction: Emotion recognition using electroencephalography (EEG) is a key aspect of brain-computer interface research. Achieving precision requires effectively extracting and integrating both spatial and temporal features. However, many studies focus on a single dimension, neglecting the interplay and complementarity of multi-feature information, and the importance of fully integrating spatial and temporal dynamics to enhance performance.

View Article and Find Full Text PDF

This study proposes a rapid method for determining pregnancy status based on fingertip pulse signals. A finger pulse sensor collects data, which is processed into unified multimodal signals. The Bamboo-Net model, combining ResNet, LSTM, and 1D-CNN, extracts key features from time, frequency, and time-frequency domains.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!