This study aimed to develop a model that fused multiple features (multi-feature fusion model) for predicting metachronous distant metastasis (DM) in breast cancer (BC) based on clinicopathological characteristics and magnetic resonance imaging (MRI). A nomogram based on clinicopathological features (clinicopathological-feature model) and a nomogram based on the multi-feature fusion model were constructed based on BC patients with DM (n=67) and matched patients (n=134) without DM. DM was diagnosed on average (17.31±13.12) months after diagnosis. The clinicopathological-feature model included seven features: reproductive history, lymph node metastasis, estrogen receptor status, progesterone receptor status, CA153, CEA, and endocrine therapy. The multi-feature fusion model included the same features and an additional three MRI features (multiple masses, fat-saturated T2WI signal, and mass size). The multi-feature fusion model was relatively better at predicting DM. The sensitivity, specificity, diagnostic accuracy and AUC of the multi-feature fusion model were 0.746 (95% CI: 0.623-0.841), 0.806 (0.727-0.867), 0.786 (0.723-0.841), and 0.854 (0.798-0.911), respectively. Both internal and external validations suggested good generalizability of the multi-feature fusion model to the clinic. The incorporation of MRI factors significantly improved the specificity and sensitivity of the nomogram. The constructed multi-feature fusion nomogram may guide DM screening and the implementation of prophylactic treatment for BC.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7585122 | PMC |
http://dx.doi.org/10.18632/aging.103630 | DOI Listing |
Int J Mol Sci
December 2024
Qingdao Institute of Software, College of Computer Science and Technology, China University of Petroleum (East China), Qingdao 266580, China.
Accurate protein secondary structure prediction (PSSP) plays a crucial role in biopharmaceutics and disease diagnosis. Current prediction methods are mainly based on multiple sequence alignment (MSA) encoding and collaborative operations of diverse networks. However, existing encoding approaches lead to poor feature space utilization, and encoding quality decreases with fewer homologous proteins.
View Article and Find Full Text PDFAccid Anal Prev
January 2025
School of Computer Science and Informatics, De Montfort University, Leicester LE1 9BH, UK.
With the continuous development of intelligent transportation systems, traffic safety has become a major societal concern, and vehicle trajectory anomaly detection technology has emerged as a crucial method to ensure safety. However, current technologies face significant challenges in handling spatiotemporal data and multi-feature fusion, including difficulties in big data processing, and have room for improvement in these areas. To address these issues, this paper proposes a novel method that combines autoencoders, Mahalanobis distance, and dynamic Bayesian networks for anomaly detection.
View Article and Find Full Text PDFPLoS One
January 2025
School of Economics & Management, Beijing Information Science & Technology University, Beijing, China.
Front Neurosci
December 2024
Department of Tuina, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China.
Introduction: Emotion recognition using electroencephalography (EEG) is a key aspect of brain-computer interface research. Achieving precision requires effectively extracting and integrating both spatial and temporal features. However, many studies focus on a single dimension, neglecting the interplay and complementarity of multi-feature information, and the importance of fully integrating spatial and temporal dynamics to enhance performance.
View Article and Find Full Text PDFComput Methods Biomech Biomed Engin
December 2024
School of Electronic Engineering, Beijing University of Posts and Telecommunications, Beijing, China.
This study proposes a rapid method for determining pregnancy status based on fingertip pulse signals. A finger pulse sensor collects data, which is processed into unified multimodal signals. The Bamboo-Net model, combining ResNet, LSTM, and 1D-CNN, extracts key features from time, frequency, and time-frequency domains.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!