Adaptive introgression from maize has facilitated the establishment of teosinte as a noxious weed in Europe.

Proc Natl Acad Sci U S A

Agroécologie, AgroSup Dijon, INRAE (Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement), Univ. Bourgogne Franche-Comté, F-21000 Dijon, France.

Published: October 2020

Global trade has considerably accelerated biological invasions. The annual tropical teosintes, the closest wild relatives of maize, were recently reported as new agricultural weeds in two European countries, Spain and France. Their prompt settlement under climatic conditions differing drastically from that of their native range indicates rapid genetic evolution. We performed a phenotypic comparison of French and Mexican teosintes under European conditions and showed that only the former could complete their life cycle during maize cropping season. To test the hypothesis that crop-to-wild introgression triggered such rapid adaptation, we used single nucleotide polymorphisms to characterize patterns of genetic variation in French, Spanish, and Mexican teosintes as well as in maize germplasm. We showed that both Spanish and French teosintes originated from ssp. race "Chalco," a weedy teosinte from the Mexican highlands. However, introduced teosintes differed markedly from their Mexican source by elevated levels of genetic introgression from the high latitude Dent maize grown in Europe. We identified a clear signature of divergent selection in a region of chromosome 8 introgressed from maize and encompassing , a major flowering time gene associated with adaptation to high latitudes. Moreover, herbicide assays and sequencing revealed that French teosintes have acquired herbicide resistance via the introgression of a mutant herbicide-target gene () present in herbicide-resistant maize cultivars. Altogether, our results demonstrate that adaptive crop-to-wild introgression has triggered both rapid adaptation to a new climatic niche and acquisition of herbicide resistance, thereby fostering the establishment of an emerging noxious weed.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7568241PMC
http://dx.doi.org/10.1073/pnas.2006633117DOI Listing

Publication Analysis

Top Keywords

noxious weed
8
mexican teosintes
8
crop-to-wild introgression
8
introgression triggered
8
triggered rapid
8
rapid adaptation
8
french teosintes
8
herbicide resistance
8
maize
7
teosintes
6

Similar Publications

Invasive weed species exhibit both advantages, such as the potential for allelochemicals in bioherbicide development, and risks, including their threat to crop production. Therefore, this study aims to identify an allelochemical from , an invasive weed species. The dose-dependent effects of shoot and root extracts (SSE, SRE) on the signaling in the forage crop and germination in various weed species (, , , , and ) were evaluated.

View Article and Find Full Text PDF

Parthenium weed ( L.) is one of the most noxious and fast-spreading invasive alien species, posing a major threat to ecosystems, agriculture, and public health worldwide. Mechanistic and correlative species distribution models are commonly employed to determine the potential habitat suitability of parthenium weed.

View Article and Find Full Text PDF

Affecting of Glyphosate Tolerance and Metabolite Content in Transgenic Overexpressing Gene from .

Plants (Basel)

December 2024

State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China.

Long-term use of the global non-selective herbicide glyphosate for weed control has caused resistance in weeds. Overproducing of the target of glyphosate 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) is one of the resistance mechanisms in weeds. However, few studies have measured the effects on tolerance levels and metabolite content in model plant species overexpressing from weeds.

View Article and Find Full Text PDF

Chemical weed control is a significant agricultural concern, and reliance on a limited range of herbicide action modes has increased resistant weed species, many of which use C4 metabolism. As a result, the identification of novel herbicidal agents with low toxicity targeting C4 plants becomes imperative. An assessment was conducted on the impact of 3-cyanobenzoic acid on the growth and photosynthetic processes of maize (), a representative C4 plant, cultivated hydroponically over 14 days.

View Article and Find Full Text PDF

Leveraging RNA interference technology for selective and sustainable crop protection.

Front Plant Sci

December 2024

State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A & F University, Hangzhou, China.

Double-stranded RNA (dsRNA) has emerged as key player in gene silencing for the past two decades. Tailor-made dsRNA is now recognized a versatile raw material, suitable for a wide range of applications in biopesticide formulations, including insect control to pesticide resistance management. The mechanism of RNA interference (RNAi) acts at the messenger RNA (mRNA) level, utilizing a sequence-dependent approach that makes it unique in term of effectiveness and specificity compared to conventional agrochemicals.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!