Full-Volume Assessment of Abdominal Aortic Aneurysms by 3-D Ultrasound and Magnetic Tracking.

Ultrasound Med Biol

Department of Vascular Surgery, Rigshospitalet, Copenhagen, Denmark; Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Copenhagen Academy for Medical Education and Simulation (CAMES), Capital Region of Denmark, Copenhagen, Denmark.

Published: December 2020

Volume assessment of abdominal aortic aneurysms (AAAs) using 3-D ultrasound (US) is an innovative technique reporting good agreement with computed tomography angiography. One major limitation of the current 3-D US technique is a limited field of view, allowing full AAA acquisition in only 60% of patients. This study presents two new US acquisition protocols using magnetic field tracking, providing an "extended field of view" (XFoV-2-D and XFoV-3-D) with the aim of including both the aortic bifurcation and neck for full-volume assessment, and compares these methods with the current standard 3-D US protocol and with computed tomography angiography. A total of 20 AAA patients were included and underwent the current standard 3-D US protocol and the two novel 3-D US "extended field of view" protocols. Four patients were excluded from further analysis because of low image quality, leaving 16 patients eligible for analysis. Full AAA volume was achieved in 8 patients (50%) using the standard 3-D US protocol, in 11 patients (69%) with the XFoV-2-D protocol and in 13 patients (81%) with the XFoV-3-D protocol. In conclusion, this article describes two new and feasible US protocols applicable for full-AAA-volume estimation in most patients and should initiate further research into the added value of full volume in AAA surveillance.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ultrasmedbio.2020.09.002DOI Listing

Publication Analysis

Top Keywords

standard 3-d
12
3-d protocol
12
full-volume assessment
8
assessment abdominal
8
abdominal aortic
8
aortic aneurysms
8
3-d ultrasound
8
computed tomography
8
tomography angiography
8
full aaa
8

Similar Publications

Purpose: To evaluate the impact of patient setup errors on the dosimetry and radiobiological models of intensity-modulated radiotherapy (IMRT) for esophageal cancer.

Methods And Materials: This retrospective study with 56 patients in thermoplastic mask (TM) and vacuum bag (VB) groups utilized real setup-error (RSE) data from cone-beam CT scans to generate simulated setup-error (SSE) data following a normal distribution. The SSE data were applied to simulate all treatment fractions per patient by shifting the plan isocenter and recalculating the dose.

View Article and Find Full Text PDF

Deep learning-based defect detection in film-coated tablets using a convolutional neural network.

Int J Pharm

January 2025

Process Research & Development, Merck & Co., Inc., Rahway, NJ, USA.

Film-coating is a critical step in pharmaceutical manufacturing. Traditional visual inspections for film-coated tablet defect assessment are subjective, inefficient, and labor-intensive. We propose a novel approach utilizing machine learning and image analysis to address these limitations.

View Article and Find Full Text PDF

Background: Recently, pyrido[2,3-] pyrimidine, triazolopyrimidine, thiazolopyrimidine, quinoline, and pyrazole derivatives have gained attention due to their diverse biological activities, including antimicrobial, antioxidant, antitubercular, antitumor, anti-inflammatory, and antiviral effects.

Objective: The synthesis of new heterocyclic compounds including 5-quinoline-pyrido[2,3-] pyrimidinone (-, , -), 6-quinoline-pyrido[2,3-]thiazolo[3,2-]pyrimidinone (, , -), 1,2,4-triazole-6-quinoline-pyrido[2,3-]thiazolo[3,2-]pyrimidinone (-), and pyrido[2,3-]thiazolo[3,2-]pyrimidine-ethyl-(pyridine)-9-thiaazabenzo[]azulenone () derivatives was performed with high yields while evaluating antimicrobial activities.

Methods: A new series of quinoline-pyrido[2,3-]thiazolo[3,2-]pyrimidine derivatives were prepared using a modern style and advanced technology, resulting in high yields of these new compounds.

View Article and Find Full Text PDF

This study aimed to develop and validate a cost-effective, customizable patient-specific phantom for simulating external ventricular drain placement, combining image segmentation, 3-D printing and molding techniques. Two variations of the phantom were created based on patient MRI data, integrating a realistic skin layer with anatomical landmarks, a 3-D printed skull, an agarose polysaccharide gel brain, and a ventricular cavity. To validate the phantom, 15 neurosurgeons, residents, and physician assistants performed 30 EVD placements.

View Article and Find Full Text PDF

Objective: To maximize local tumor control, stabilize affected bones, and preserve or replace joints with minimal interventional burden, thereby enhancing quality of life for empowered living.

Indications: Suitable for patients with bone metastases, particularly those with severe pain and/or fractures and appropriate life expectancy.

Contraindications: In primary bone tumors, refer to the sarcoma surgery team for evaluation of wide resection.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!