This paper demonstrates designs of transparent electrodes for polarized light based on semiconductor deep-subwavelength monolithic high-contrast gratings integrated with metal (metalMHCG). We provide theoretical background explaining the phenomena of high transmittance in the gratings and investigate their optimal parameters, which enable above 95% transmittance for sheet resistance of 2 ΩSq and over 90% transmittance for extremely small sheet resistance of 0.04 ΩSq in a broad spectral range below the semiconductor band-gap. The analysis is based on our fully vectorial optical model, which has been verified previously via comparison with the experimental characteristics of similar structures. The transparent electrodes can be realized in any high refractive index material used in optoelectronics and designed for light in spectral ranges starting from ultra-violet with no upper limit for the wavelength of the electromagnetic waves. They not only enable lateral transport of electrons but can also be used as an electric contact for injecting current into a semiconductor.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OE.400489 | DOI Listing |
Adv Sci (Weinh)
March 2022
State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, International Research Center for Advanced Photonics, Zhejiang University, Hangzhou, 310027, China.
Continued research in fields such as materials science and biomedicine requires the development of a super-resolution imaging technique with a large field of view (FOV) and deep subwavelength resolution that is compatible with both fluorescent and nonfluorescent samples. Existing on-chip super-resolution methods exclusively focus on either fluorescent or nonfluorescent imaging, and, as such, there is an urgent requirement for a more general technique that is capable of both modes of imaging. In this study, to realize labeled and label-free super-resolution imaging on a single scalable photonic chip, a universal super-resolution imaging method based on the tunable virtual-wavevector spatial frequency shift (TVSFS) principle is introduced.
View Article and Find Full Text PDFThis paper demonstrates designs of transparent electrodes for polarized light based on semiconductor deep-subwavelength monolithic high-contrast gratings integrated with metal (metalMHCG). We provide theoretical background explaining the phenomena of high transmittance in the gratings and investigate their optimal parameters, which enable above 95% transmittance for sheet resistance of 2 ΩSq and over 90% transmittance for extremely small sheet resistance of 0.04 ΩSq in a broad spectral range below the semiconductor band-gap.
View Article and Find Full Text PDFSci Adv
October 2017
Key Laboratory for the Physics and Chemistry of Nanodevices and Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China.
In the post-Moore era, an electrically driven monolithic optoelectronic integrated circuit (OEIC) fabricated from a single material is pursued globally to enable the construction of wafer-scale compact computing systems with powerful processing capabilities and low-power consumption. We report a monolithic plasmonic interconnect circuit (PIC) consisting of a photovoltaic (PV) cascading detector, Au-strip waveguides, and electrically driven surface plasmon polariton (SPP) sources. These components are fabricated from carbon nanotubes (CNTs) via a CMOS (complementary metal-oxide semiconductor)-compatible doping-free technique in the same feature size, which can be reduced to deep-subwavelength scale (~λ/7 to λ/95, λ = 1340 nm) compared with the 14-nm technique node.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!